Recall Markov's inequality:

\[\Pr[|X| \geq t] \leq \frac{\mathbb{E}|X|}{t} \]

Proof:

\[
\mathbb{E}|X| = \int_{\omega:|X|<t} |X| \, dP + \int_{\omega:|X|\geq t} |X| \, dP \\
\geq 0 + t \cdot \Pr[|X| \geq t]
\]
Markov’s Inequality

What was special about the absolute value function?

1. non-negative
2. increasing

We can apply the same proof to other functions.
Chebyshev’s Inequality

Theorem

Chebyshev’s Inequality

\[
\Pr[|X - \mathbb{E}X| \geq t] \leq \frac{\text{var}(X)}{t^2}
\]

\[
\text{var}(X) = \mathbb{E}[|X - \mathbb{E}X|^2] \geq t^2 \cdot \Pr[|X - \mathbb{E}X| \geq t]
\]
Chebyshev’s Inequality

For example, if X has mean 3, variance 1, then the probability that X is more than 5 or less than 1 is bounded by $1/4$.

Is the bound a good bound for the Normal distribution? Give an example of a random variable where the Chebyshev bound is tight.
As an application of Chebyshev’s Inequality, we can prove our first limit theorem.

\textbf{Theorem}

Let X_1, X_2, \ldots be i.i.d. random variables with mean μ and variance σ^2. Then for every $\epsilon > 0$,

$$\Pr \left[\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| > \epsilon \right] \to 0 \text{ as } n \to \infty$$
Comments:
- What does the WLLN say about political polling, for instance?
- Are all of the conditions necessary?
- Why do we say ‘Weak’?
Proof: Let \(U_n = \frac{X_1 + \ldots + X_n}{n} \) and calculate \(\mathbb{E} U_n \) and \(\text{var}(U_n) \)

\[\mathbb{E} U_n = \mu \]

\[\text{var}(U_n) = \frac{1}{n^2} \sum \text{var}(X_i) = \frac{\sigma^2}{n} \]

Now apply Chebyshev:

\[\Pr \left(\left| \frac{X_1 + \cdots + X_n}{n} - \mu \right| > \epsilon \right) \leq \frac{\sigma^2}{\epsilon^2 n} \to 0 \text{ as } n \to \infty \]
Let X be a counting r.v. If $\mathbb{E}X \to 0$ as $n \to \infty$, then $\Pr[X = 0] \to 1$.

But what if $\mathbb{E}X \to \infty$? Can we say that $\Pr[X = 0] \to 0$?
No, not necessarily.
Example: Let $X = n^2$ with probability $1/n$ and 0 with probability $1 - 1/n$. Then $X = 0$ whp, but $\mathbb{E}X \to \infty$.
If X is a counting random variable then by plugging in $t = \mathbb{E}X$, we have

Lemma

\[
\Pr[X = 0] \leq \frac{\text{var}(X)}{(\mathbb{E}X)^2}
\]

In particular, if $\mathbb{E}X \to \infty$ and $\text{var}(X) = o\left((\mathbb{E}X)^2\right)$, then $X \geq 1$ whp.
m balls thrown randomly into n bins. We saw with the first-moment method that if $m = (1 + \epsilon)n \log n$, then whp there are no empty bins. But what if $m = (1 - \epsilon)n \log n$?

Let X be the number of empty bins.

$$\mathbb{E}X = n \cdot \left(1 - \frac{1}{n}\right)^m$$

If $m = (1 - \epsilon)n \log n$ then $\mathbb{E}X \sim n^\epsilon \to \infty$. But to conclude that $X \geq 1$ whp, we need the second-moment method.
Let $X = X_1 + X_2 + \cdots + X_n$. Then

$$\text{var}(X) = \sum_{i=1}^{n} \text{var}(X_i) + \sum_{i \neq j} \text{cov}(X_i, X_j)$$

Let X_i be the indicator rv that the ith bin is empty.
Since we just need an upper bound to apply Chebyshev’s inequality, things become simpler.

First, since the X_i’s are indicator rv’s, $\text{var}(X_i) \leq \mathbb{E}X_i$ and $\sum \text{var}(X_i) \leq \mathbb{E}X$. Since $\mathbb{E}X \to \infty$ for our choice of m,

$$\sum \text{var}(X_i) = o \left((\mathbb{E}X)^2\right)$$
We need to bound $\sum_{i \neq j} \text{cov}(X_i, X_j)$. Each of the terms are the same and there are $n(n-1)$ of them.

$$\text{cov}(X_i, X_j) = E(X_i X_j) - E X_i E X_j$$

$$= \Pr[\text{ i and j empty}] - \Pr[\text{ i empty }] \cdot \Pr[\text{ j empty }]$$

$$= \left(1 - \frac{2}{n}\right)^m - \left(1 - \frac{1}{n}\right)^{2m}$$

We could calculate and show that this is small, but that is unnecessary: the covariance terms are negative.
We showed that for \(m = (1 - \epsilon)n \log n \),

\[\mathbb{E}X \to \infty \]

and

\[\text{var}(X) = o \left((\mathbb{E}X)^2 \right) \]

Then using Chebyshev's inequality with \(t = \mathbb{E}X \), we concluded that \(\Pr[X = 0] = o(1) \).
Applications of the 2nd Moment Method

What’s the ‘typical’ position of a simple random walk after n steps?
What’s the longest run of Heads in n flips of a fair coin?
What is the maximum of n independent standard normal RV’s?