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Abstract. We study a birthday inequality in random geometric graphs: the probability
of the empty graph is upper bounded by the product of the probabilities that each edge
is absent. We show the birthday inequality holds at low densities, but does not hold in
general. We give three different applications of the birthday inequality in statistical physics
and combinatorics: we prove lower bounds on the free energy of the hard sphere model and
upper bounds on the number of independent sets and matchings of a given size in d-regular
graphs.

The birthday inequality is implied by a repulsion inequality : the expected volume of the
union of spheres of radius r around n randomly placed centers increases if we condition on
the event that the centers are at pairwise distance greater than r. Surprisingly we show that
the repulsion inequality is not true in general, and in particular that it fails in 24-dimensional
Euclidean space: conditioning on the pairwise repulsion of centers of 24-dimensional spheres
can decrease the expected volume of their union.

How many people must be in a room so that the chance at least two share a birthday is
at least 1/2? This is the ‘Birthday Problem’, and the answer is that 23 people is enough
(assuming that the birthdays are independently and identically distributed).

Our starting point is an elementary inequality, which we will call the birthday inequality :

Lemma 1 (The Birthday Inequality). Suppose n people have birthdays chosen independently
and uniformly at random from one of m birthdays. Let En be the event that no two people
share a birthday, and p = 1/m the probability that two given people share a birthday. Then

Pr[En] ≤ (1− p)(
n
2)

Proof. Let Ek be the event that there are no shared birthdays among the first k people. Let
Vk be the fraction of birthdays covered by the first k people. Then

Pr[En] = E[1− Vn−1|En−1] · Pr[En−1]

We assume inductively that Pr[Ek] ≤ (1− p)(
k
2), and note that

E[1− Vk|Ek] = 1− k

m
≤
(

1− 1

m

)k
= (1− p)k

which shows that Pr[Ek+1] ≤ (1− p)(
k+1
2 ) for all k ≥ 1. �

We are interested in geometric birthday inequalities, and in particular in settings relevant
to two models from statistical physics: the hard sphere model and the hard core lattice gas
model. In these models, particles are placed at random in a metric space X equipped with
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a probability measure µ (e.g. the unit cube or a subset of the d-dimensional integer lattice
with uniform measure) conditioned on all pairwise distances between particles being larger
than some threshold r. In this setting the birthday inequality supposes an upper bound
on the probability that no two particles are within distance r when n particles are placed
independently at random according to µ.

Definition 1. Let X1, X2, . . . Xn be independently sampled points from a space X according
to the distribution µ. Then a birthday inequality holds if

(1) Pr[En] ≤ (1− p)(
n
2)

where En is the event {∧1≤i<j≤nd(Xi, Xj) > r} and p := Pr[d(X1, X2) ≤ r].

The quantity on the right is what the probability on the left would be if all pairwise inter-
actions were independent, and so the birthday inequality is a statement about correlations
of these events.

A related inequality is the following repulsion inequality.

Definition 2. In the setting above, the repulsion inequality holds if

(2) E[Vk|Ek] ≥ E[Vk]

where Ek is the event that the centers X1, X2, . . . Xk are at pairwise distance greater than r,
Vk is the volume fraction of X covered by the union of the closed balls of radius r around
X1, . . . Xk, and the expectations are taken over choosing X1, . . . Xk independently at random
in X according to µ.

The repulsion inequality states that conditioning on the event that the centers of randomly
placed balls of radius r are at pairwise distance greater than r does not decrease the expected
volume of their union (as compared to the unconditional expectation). The repulsion inequal-
ity has the flavor of a probabilistic version of the Kneser-Poulsen conjecture [16, 12]: moving
a set of spheres in Euclidean space so that all pairwise distances between their centers do
not decrease cannot decrease the volume of the union of the spheres. This was proved in two
dimensions by Bezdek and Connelly [1], but is open in higher dimensions.

While the repulsion inequality seems intuitively obvious, we show in Corollary 2 that it is
not always true; in particular it fails in dimension 24.

As in the proof of Lemma 1, the birthday inequality on n points is implied if the repulsion
inequality holds for all k between 1 and n−1. We write Pr[En] = (1−E[Vn−1|En−1])·Pr[En−1]
and continue inductively. The unconditional expectation E[Vk] = 1− (1− p)k, and so if the
repulsion inequality holds for all 1 ≤ k ≤ n− 1, the birthday inequality holds.

We will show that at sufficiently low particle densities, the repulsion inequality holds in
both the hard sphere and hard core models. This leads to bounds on the free energy in
both models via the birthday inequality. However, we will also show that at sufficiently high
densities the birthday inequality can fail. We conclude by conjecturing that the failure of the
repulsion inequality can be used to indicate the fluid/solid phase transition.

1. Hard spheres

The hard sphere model is a model of particles as non-overlapping spheres: there are no
forces in the model besides the hard constraint that two spheres cannot overlap. We define
the hard sphere model on T d, the d-dimensional unit torus.
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Definition 3. The hard sphere model Hd(n, r) consists of a uniformly random configuration
of n spheres of radius r/2 in T d, conditioned on the event that the centers of the n spheres
are at pairwise distance greater than r.

An important quantity in statistical physics is the partition function:

Definition 4. The partition function, Zd(n, r), of the hard sphere model on T d is defined as:

(3) Zd(n, r) =

∫
T d
· · ·
∫
T d

1En dx1 · · · dxn

where En is the event that d(xi, xj) > r for all 1 ≤ i < j ≤ n.

We define the density α of Hd(n, r) as the fraction of volume of T d occupied by the spheres
of radius r/2 around the n centers, i.e., α = n(r/2)dvd where vd is the volume of the unit
ball in Rd. As α is the density of the random sphere packing given by Hd(n, r) it must lie
between 0 and the maximum sphere packing density in d dimensions.

Definition 5. The free energy of the hard sphere model at density α is:

(4) Fd(α) = − lim
n→∞

1

n
logZd(n, rn(α))

where rn(α) = 2(α/(nvd))
1/d.

Physicists believe that the hard sphere model in dimension d ≥ 2 undergoes a fluid /
solid phase transition as the density of the spheres increases: at low densities configurations
show no long-range order, while after the phase transition long-range order emerges. For
an introduction to the hard sphere model see [14] and the references therein. In dimension
d = 1 there is no phase transition and the model is solved; that is, an explicit expression
for the free energy is known, and it has no non-analytic points [19]. Mathematicians have
proved rigorous lower bounds on the density at which a Markov chain to sample from the
model mixes rapidly [11, 18, 6, 8]. See [17, 2] for a discussion of mathematical proofs of phase
transitions in continuous hard core models, and in the second a proof of a phase transition
in a system with zipper-like molecules.

We define the model with spheres of radius r/2 because it will be convenient to view the
hard sphere model from the perspective of the random geometric graph Gd(n, r): n points
placed uniformly and independently at random in T d with an edge placed between pairs of
points at distance at most r.

The following proposition relates the hard sphere model to the random geometric graph,
and follows immediately from Definition 3.

Proposition 1.
Zd(n, r) = Pr[Gd(n, r) is empty].

In what follows we will parameterize both the hard sphere model and the random geometric
graph by p := vdr

d, the probability that two uniformly random points in T d are at distance
at most r. Abusing notation we will write Gd(n, p) for Gd(n, r(p)) where vdr(p)

d = p. This
parameterization gives some intuition for the Birthday Inequality: if G(n, p) is the Erdős-
Rényi random graph on n vertices (every edge present independently with probability p),
then the birthday inequality is Pr[Gd(n, p) is empty] ≤ Pr[G(n, p) is empty]. In fact, if we
fix n and p and let d → ∞, then Pr[Gd(n, p) is empty] → Pr[G(n, p) is empty] (Theorem 2
in [5] for the RGG defined on the surface of the d-dimensional unit sphere).
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The birthday inequality holds in dimension 1 for all values of p:

Proposition 2. For all p ∈ [0, 1],

Pr[G1(n, p) is empty] ≤ (1− p)(
n
2)

Proof. For p > 2/n, we are beyond the maximum packing density, and so
Pr[G1(n, p) is empty] = 0 and the inequality holds. For p ≤ 2/n, we can write the left-
hand side explicitly: Pr[G1(n, p) is empty] = (1−np/2)n−1, and then it is a calculus exercise

to show that (1− np/2)n−1 ≤ (1− p)(
n
2) for p ≤ 2/n. �

Our first main result of this section is to show that in any dimension, at a low enough
density the birthday inequality holds. We do this via the repulsion inequality (2).

Theorem 1. For the the hard sphere model on T d, for densities α ≤ 2−2−3d the repulsion
inequality holds.

Theorem 1 and the birthday inequality immediately imply a lower bound on the free energy
of the hard sphere model at sufficiently low densities, which to the best of our knowledge is
new.

Corollary 1. For α ≤ 2−2−3d, Fd(α) ≥ 2d−1α.

Proof of Theorem 1. We first define some notation. For a collection of k centers in T d, let
Vk be the volume of points in T d at distance at most r from one of the k centers, i.e. the
volume of the union of balls of radius r around the centers. Let Ek be the event that the k
centers are at pairwise distance greater than r. As always, we have p = vdr

d, and we assume
α ≤ 2−2−3d, i.e. p ≤ 4−1−d/n. Our goal is to prove the repulsion inequality E[Vk|Ek] ≥ E[Vk]
where the randomness is in placing each center uniformly and independently at random in
T d.

We will prove the following estimate for all 1 ≤ k ≤ n− 1:

(5) E[Vk|Ek] ≥ kp−
(
k

2

)
p2

1− 4−d

(1− kp)2

To complete the proof of the Theorem from (5) we use inclusion/exclusion to bound E[Vk] =

1− (1− p)k ≤ kp−
(
k
2

)
p2 +

(
k
3

)
p3, and so

E[Vk|Ek]− E[Vk] ≥
(
k

2

)
p2
(

1− 1− 4−d

(1− kp)2
− k − 2

3
p

)
which is non-negative when p ≤ 4−1−d/n.

To prove (5) we use inclusion/exclusion and linearity of expectation to get the lower bound

E[Vk|Ek] ≥ kp−
∑
i<j

E[V (i, j)|Ek] = kp−
(
k

2

)
E[V (1, 2)|Ek]

where V (i, j) is the volume covered by the balls of radius r around both centers i and j, i.e.
their overlap volume.
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Now let x be a fixed point in T d (say the origin), A1,2
x the event that x is covered by the

balls of radius r around both centers 1 and 2, and E2 the event that centers 1 and 2 are at
distance greater r. Then we have

E[V (1, 2)|Ek] = Pr[A1,2
x |Ek]

=
Pr[A1,2

x ∩ Ek]
Pr[Ek]

=
Pr[A1,2

x ∩ E2] · Pr[Ek|A1,2
x ∩ E2]

Pr[E2] · Pr[Ek|E2]

= Pr[A1,2
x |E2] ·

Pr[Ek|A1,2
x ∩ E2]

Pr[Ek|E2]

First note that Pr[Ek|A1,2
x ∩ E2] ≤ Pr[Ek−2]. Next, write

Pr[Ek|E2] =
Pr[Ek−2] Pr[Ek|Ek−2]

Pr[E2]

≥ Pr[Ek−2]
(1− (k − 2)p)(1− (k − 1)p)

1− p

≥ Pr[Ek−2]
(1− kp)2

1− p

where we have used the inequalities Pr[Ek−1|Ek−2] ≥ 1−(k−2)p and Pr[Ek|Ek−1] ≥ 1−(k−
1)p which follow from the union bound: the volume of the union of balls of radius r around
k − 2 centers is at most (k − 2)p.

This gives

Pr[Ek|A1,2
x ∩ E2]

Pr[Ek|E2]
≤ 1− p

(1− kp)2

Finally we upper bound Pr[A1,2
x |E2]. We write

p2 = Pr[A1,2
x ] = pPr[A1,2

x |E2] + (1− p) Pr[A1,2
x |E2]

The probability that three given points form a triangle in the random geometric graph with
connection radius r is p ·Pr[A1,2

x |E2]. A lower bound for the probability of forming a triangle
is the probability that the first two points fall in a ball of radius r/2 around the third, which
has probability p24−d. Putting this together we have

Pr[A1,2
x |E2] ≤

p2 − p24−d

1− p
and

E[V (1, 2)|Ek] ≤ p2
1− 4−d

(1− kp)2
.

which gives (5).

�
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Our next result is that the birthday inequality does not hold in general. We show this in
dimension 24, using the fact that there is a sphere packing of particularly high density.

Theorem 2. In dimension 24, the birthday inequality fails for large enough n at densities
α ∈ ((.79)24 · ρ, ρ), where ρ = .001929.

This theorem implies that the repulsion inequality fails at some density in dimension 24:

Corollary 2. For large enough n, there exists some r so that when n spheres with centers
x1, . . . xn are placed uniformly at random in T 24,

E [vol (∪ni=1B(xi, r)) |d(xi, xj) > r for all i 6= j] < E [vol (∪ni=1B(xi, r))] ,

where B(xi, r) is the closed ball of radius r around the center xi.

In other words, conditioning on the pairwise repulsion of the centers of the spheres can
decrease the expected volume of their union!

Working on the torus is not essential to the result: the same holds if the centers of the
spheres are chosen at random in a box in R24 large enough so that boundary effects are
negligible.

Proof of Theorem 2. Consider some packing of n spheres of radius rp in T d with density ρ.
Place a sphere of radius (1−t)rp for 0 < t < 1 around each center of the packing. If we place a
new set of centers within these spheres of radius (1−t)rp, then the spheres of radius trp =: r/2

around them will be disjoint. The density of such a configuration is α = nvd(trp)
d = tdρ, or

in other words, t = (α/ρ)1/d. We can lower bound the probability that n random centers of
spheres of radius r/2 will be disjoint by the probability that each of the n centers falls into
a distinct sphere of radius (1− t)rp around the centers of the packing:

Pr[Gd(n, r) is empty] ≥ n!

nn
((1− t)dρ)n =

n!

nn

(
1− (α/ρ)1/d

)dn
ρn

and

− 1

n
log Pr[Gd(n, r) is empty] ≤ 1− d log

(
1− (α/ρ)1/d

)
− log ρ+ o(1)

The Birthday Inequality, however, asserts that

− 1

n
log Pr[Gd(n, r) is empty] ≥ 2d−1α

For d = 24, there is a sphere packing of R24 of density π12

12! via the Leech lattice [13, 4]. For

any ε > 0, and all large enough n, we can find a packing of T 24 with n disjoint spheres which

has density at least π12

12! − ε. Choosing ρ = .001929 ≈ π12

12! − 5 · 10−7, we can compare the
birthday inequality lower bound on the free energy BI(ρ, t) to the cell model upper bound
CM(ρ, t).

F (t) := BI(ρ, t)− CM(ρ, t) =
ρ

2
(2t)24 − 1 + 24 log(1− t) + log(ρ)

A calculation gives F (.79) > 0 and F ′(t) > 0 for t ∈ (.79, 1). This proves Theorem 2. Corol-
lary 2 follows immediately since the sequence of repulsion inequalities implies the birthday
inequality. �
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The hard square model is the hard sphere model under l∞ distance: configurations of
disjoint d-dimensional axis-parallel cubes. Cubes pack particularly nicely, with a maximum
packing density of 1. We use this to show that the birthday inequality fails in all sufficiently
high dimensions.

Theorem 3. The birthday inequality fails in the hard square model for some range of densities
in dimension d ≥ 6. For d = 6, the inequality fails for α ∈ (.4, .95). For d > 6, the inequality
fails for α ∈ (η

d
, ηd), where η

d
∼ 21−d log(2) · d as d→∞, ηd → 1 as d→∞.

Proof. Here we ask for a given d if there is some α ∈ (0, 1) so that

1− d log(1− α1/d) > 2d−1α

A numerical calculation for d = 6 and some calculus give the theorem. �

2. The hard core model

Assume n is such that n1/d is an even integer. Let Zd(n) be the d-dimensional discrete

torus of sidelength n1/d (for a total of n sites). Assume α is such that αn is an integer. We
define a fixed-density hard core model as follows:

Definition 6. The fixed-density hard core model HCd(n, α) for α ∈ [0, 1/2] consists of a
uniformly chosen random independent set of k = αn sites in Zd(n).

This model is a natural discretization of the hard sphere model. It is closely related to the
hard core model with an activity parameter λ: an independent set I ⊂ Zd(n) chosen with

probability proportional to λ|I|. By conditioning on |I| = αn we obtain the fixed-density
hard core model defined above. In the terminology of statistical physics, the fixed-density
model is the canonical ensemble, while the activity parameter model is the grand canonical
ensemble.

We can define the partition function and free energy of the hard core model:

Definition 7. The partition function, Zd(n, k), of the hard core model is defined as:

(6) Zd(n, k) = IS(k) := # of independent sets of size k in Zd(n)

We can write Zd(n, k) = nk

k! Pr[Xk independent] where Xk is a (multi)-set of k independent
and uniformly chosen sites from Zd(n).

Definition 8. The free energy of the hard core model at density α is:

(7) Fd(α) = lim
n→∞

1

n
logZd(n, αn)

Note that we do not take the negative of the log partition function here, and so while we
obtained lower bounds on the free energy of the hard sphere model, here we will obtain upper
bounds.

We can write the free energy in terms of the probability Xk is an independent set:

(8) Fd(α) = α− α logα+ lim
n→∞

1

n
log Pr[Xαn independent]
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We can also define the fixed-size hard core model on the d-dimensional Hamming cube Qd,
with vertex set {0, 1}d and edges between vectors that differ in exactly one coordinate. The
partition function and free energy are defined as in the hard core model on Zd(n).

Our first theorem of this section is that the repulsion inequality (and thus the Birthday
Inequality) holds in the hard core model at a sufficiently low density for any d-regular graph.
We consider a d-regular graph G on n vertices, and select a set of k vertices Xk uniformly
at random with replacement. We consider two vertices in Xk to form an edge if they are
neighbors in G or if they are identical; so if Xk has no edges, it is an independent set of size
k in G. Thus we have p = d+1

n , the probability that two randomly chosen vertices form an
edge.

Theorem 4. For the the hard core model on any d-regular graph G on n vertices, at densities
α ≤ (d+ 1)−2, the repulsion inequality (2) holds.

As a corollary via the birthday inequality we get an improved upper bound on the number
of independent sets of size αn in all d-regular graphs, for α ≤ (d+ 1)−2.

Corollary 3. For α ≤ (d+ 1)−2, the number of independent sets of size αn in any d-regular
graph G satisfies:

IS(αn) ≤ nαn

(αn)!

(
1− d+ 1

n

)(αn2 )

On the scale of the free energy, this gives:

(9)
1

n
log IS(αn) ≤ α− α logα− α2d+ 1

2
.

For α ≤ (d + 1)−2, Corollary 3 improves the bound for d-regular bipartite graphs
given by Carroll, Galvin, and Tetali [3]1. Corollary 3 holds for all d-regular graphs.
Specializing to Zd(n) and Qd we get upper bounds of α (1− logα− α(2d+ 1)/2) and
α (1− logα− α(d+ 1)/2) respectively on the normalized log of number of independent sets
of size αn. As far as we know these are the best bounds known on the number of independent
sets of a given size in Zd(n) and Qd at these densities.

Proof of Theorem 4. The proof is essentially the same as the proof of Theorem 1, and this is
one of the motivations of this work: to find methods for analyzing the hard core model that
generalize to the hard sphere model.

Let Vk be the fraction of vertices in G at distance at most 1 to a set of k randomly chosen
vertices. Let Ek be the event that the set of k random vertices is at pairwise distance at
least 2 in G. We can assume that k ≥ 2 (and thus n ≥ 2(d + 1)2) since the case k = 1 is
immediate. We let p = d+1

n , the probability that two random chosen vertices in G coincide
or are neighbors. We will prove the following estimate:

(10) E[Vk|Ek] ≥
k(d+ 1)

n
−
(
k

2

)
d(d− 1)

n2(1− kp)2

1For this range of α, the best upper bound in [3] on IS(αn) is the third bound given in Theorem 1.6,

2αn
(
n/2
αn

)
. On the scale of the free energy this is −α log(α)− (1/2− α) log(1− 2α). Some calculus shows that

the bound in (9) is lower for α ∈ (0, (d+ 1)−2).
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where the randomness is in selecting the k vertices uniformly and independently at random.

By inclusion/exclusion we have

E[Vk] = 1− (1−p)k ≤ kp−
(
k

2

)
p2 +

(
k

3

)
p3 =

k(d+ 1)

n
−
(
k

2

)
(d+ 1)2

n2

(
1− (k − 2)(d+ 1)

3n

)
and using (10) we get

E[Vk|Ek]− E[Vk] ≥
(
k

2

)
p2
(

1− d(d− 1)

(d+ 1)2
· 1

(1− kp)2
− (k − 2)(d+ 1)

3n

)
≥
(
k

2

)
p2
(

1− d(d− 1)

(d+ 1)2
· 1

(1− kp)2
− kp

3

)
This is non-negative when α = k/n ≤ 1

(d+1)2
: the RHS is decreasing in k, and so it is enough

to prove when k = n/(d + 1)2. This follows from an elementary calculation and proves
Theorem 4, modulo the estimate (10).

To prove (10), we use inclusion/exclusion again to bound

E[Vk|Ek] ≥ kp−
(
k

2

)
E[V (1, 2)|Ek],

where V (1, 2) is the fraction of vertices in G at distance 0 or 1 of the first and second of the

k randomly selected vertices. Let A1,2
v be the event that vertex v neighbors both of the first

two selected vertices. We write

E[V (1, 2)|Ek] =
E[V (1, 2) · 1Ek ]

Pr[Ek]

=
1

n

∑
v∈G

Pr[A1,2
v ∩ Ek]

Pr[Ek]

=
1

n

∑
v∈G

Pr[A1,2
v ∩ E2] · Pr[Ek|A1,2

v ∩ E2]

Pr[E2] · Pr[Ek|E2]

=
1

n

∑
v∈G

Pr[A1,2
v |E2] ·

Pr[Ek|A1,2
v ∩ E2]

Pr[Ek|E2]

If the neighbors of v form a clique then that term in the sum is 0. We assume from here that
there is at least one edge missing from the subgraph of v’s neighbors.

Consider Pr[Ek|A1,2
v ∩E2]

Pr[Ek|E2]
. Again we have Pr[Ek|A1,2

v ∩ E2] ≤ Pr[Ek−2], and

Pr[Ek|E2] ≥
Pr[Ek−2] Pr[Ek|Ek−2]

Pr[E2]

≥ Pr[Ek−2](1− kp)2

1− p
which gives

(11)
Pr[Ek|A1,2

v ∩ E2]

Pr[Ek|E2]
≤ 1− p

(1− kp)2
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Next note that for any d-regular graph G,

(12)
1

n

∑
v∈G

Pr[A1,2
v |E2] =

1

n

n
(
d
2

)
− 3 ·#C ′3s in G(
n
2

)
− dn/2

≤ d

n
· d− 1

n(1− p)

Inequalities (11) and (12) give

E[V (1, 2)|Ek] ≤
d(d− 1)

n2(1− kp)2

and thus (10).

�

We now show that the birthday inequality fails in general for d-regular, bipartite graphs
with d ≥ 6.

Theorem 5. For d ≥ 6, there exists constants αld ∈ (0, 1/2) so that for n large enough,
the birthday inequality fails for the hard core model on any d-regular, bipartite graph G on n
vertices at densities α ∈ [αld, 1/2]. Asymptotically, αld ∼ 2 log 2/d as d→∞.

Proof. For a lower bound on the number of independent sets of size αn in G, we use the
parity lower bound: any subset of one side of the bipartition is an independent set, and so

IS(αn) ≥
(
n/2

αn

)
The corresponding bound on the free energy is

Fd(α) ≥ −α log(2α)− (1/2− α) log(1− 2α) + o(1)

The birthday inequality asserts the upper bound:

Fd(α) ≤ α
(

1− logα− αd+ 1

2

)
+ o(1)

Some calculus shows that these bounds cross for d ≥ 6 (see Figure 1), and that asymptot-
ically as d→∞, the crossing point is αld ∼ 2 log 2/d.

�

3. Matchings

In this section we use the repulsion inequality to give bounds on the number of matchings
of size k in a d-regular graph G on n vertices. Such a graph has nd/2 edges, and each
edge shares a vertex with 2d − 2 other edges. We let p = 2d−1

nd/2 , the probability that two

uniformly random edges (with replacement) coincide or intersect at a vertex. Then the

birthday inequality asserts that Pr[Ek] ≤ (1 − p)(
k
2), where Ek is the event that k edges

chosen uniformly at random from G form a matching of size k. The repulsion inequality
states that E[Vk|Ek] ≥ E[Vk], where Vk is the fraction of edges covered by a set of k edges:
the fraction of edges that are contained in or intersect the set. Since a matching in G is an
independent set in the line graph of G, we could apply Theorem 4 to get a bound, but we
can do somewhat better directly, since for d ≥ 3, the line graph of a d-regular graph contains
many triangles. Let M(k) be the number of matchings consisting of k edges in G. We show:
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Figure 1. Free Energy bounds for the hard core model on 6-regular bipartite graphs

Theorem 6. For α ≤ 3
28 , the repulsion inequality holds for matchings of size αn2 in a d-

regular graph on n vertices, and as a consequence

M(αn/2) ≤ (nd/2)αn/2

(αn/2)!

(
1− 2d− 1

nd/2

)(αn/22 )
.

On a logarithmic scale, this gives

(13)
2

n
logM(αn/2) ≤ α log d− α logα+ α− α2

2

2d− 1

d
.

For α = O(d−1/3), Theorem 6 improves the bound given by Ilinca and Kahn in [10]2.
Together Theorem 6 and [10] show that the birthday inequality holds for matchings of all
sizes in d-regular graphs.

Corollary 4. The birthday inequality holds for matchings of size k, for all k, in every d-
regular graph on n vertices.

In would be nice to prove that in fact the repulsion inequality holds for matchings of any
size in a d-regular graph.

2The bound in [10], translated to natural logarithms, is
2
n

logM(αn/2) ≤ α log d−α logα−2(1−α) log(1−α)−α+(log d)/(d−1). Subtracting the first two matching

terms then power expanding around α = 0 gives α − α2 + (log d)/(d − 1) − α3/3 − . . . for the Ilinca-Kahn

bound and α−α2 +α2/(2d) for the birthday inequality bound (13). These cross when α = Θ(((log d)/d)1/3).
In particular, for all larger α, the Ilinca-Kahn bound is stronger than the birthday inequality, giving Corollary
4.
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Proof of Theorem 6. Let m = nd/2 be the number of edges of G, and p = 2d−1
m . We want to

show that E[Vk|Ek] ≥ E[Vk]. Let L2 be the number of edges of G that are covered by two
edges of a matching of size k but are not part of the matching themselves. Then

E[Vk|Ek] = k + (2d− 2)k − E[L2|Ek] = m (pk − E[L2/m|Ek])

By inclusion/exclusion we have

E[Vk] = m(1− (1− p)k) ≤ mpk −mp2
(
k

2

)
+mp3

(
k

3

)
≤ m

(
pk −

(
k

2

)
p2
(

1− kp

3

))
So it is enough to show that

E[L2|Ek] ≤ m
(
k

2

)
p2
(

1− kp

3

)
We can write

E[L2|Ek] =
∑
e∈G

(
k

2

)
Pr[A1,2

2 |Ek]

where A1,2
e is the event that edge e is covered by edges 1 and 2. Now it is enough to show

that Pr[A1,2
2 |Ek] ≤ p2(1− kp/3). As in the proofs above we write

Pr[A1,2
2 |Ek] = Pr[A1,2

e |E2] ·
Pr[Ek|A1,2

e ∩ E2]

Pr[Ek|E2]

≤ Pr[A1,2
e |E2] ·

1− p
(1− kp)2

We calculate

Pr[A1,2
e |E2] =

2(d− 1)2

m2(1− p)
which gives

Pr[A1,2
2 |Ek] ≤

2(d− 1)2

m2(1− kp)2

Our assumption that α ≤ 3/28 implies that kp ≤ 3
14 , and so

Pr[A1,2
2 |Ek] ≤

2(d− 1)2

m2(1− kp)2
≤ (2d− 1)2

m2

(
1− kp

3

)
= p2(1− kp/3)

which shows that the repulsion inequality holds. �

4. Conclusions and conjectures

We conjecture that the lower bounds on the density at which the birthday inequality holds
in Theorem 1 and Theorem 4 can be extended to the entire fluid phase of the hard sphere
and hard core models.

We describe two notions of the fluid phase of the hard sphere and fixed-size hard core
model. The first is decay of correlations:
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Definition 9. Let x0, x′0, xt be positions in T d or lattice sites on Zd(n). Let A0 (resp.
A′0, At) be the event that the position x0 (x′0, xt) is covered by a sphere in the hard sphere
model or occupied by a particle in the hard core model. Then the model exhibits decay of
correlations at density α if there is some constant cα > 0 so that∣∣Pr[At|A0]− Pr[At|A′0

]
| ≤ g(cαdt/r)

where dt = min{d(x0, xt), d(x′0, xt)} and g(s) is some function so that lims→∞ g(s) = 0.
(For the hard core model, we take r = 1). The model exhibits exponentially fast decay of
correlations if we can take g(s) ≤ e−cs for some c > 0.

The second notion is the rapid mixing of a specific Markov chain with the hard sphere or
hard core distribution as its stationary distribution. One such chain is the single-particle,
global-move dynamics (see e.g.[8]). A single move of the Markov chain consists of selecting
one center of a sphere or one particle on the lattice uniformly at random, then selecting a
position or a site uniformly at random from T d or Zd(n) and moving the center or the particle
to the new position as long as it does not violate the hard constraints of the model. We say
the chain mixes rapidly if the mixing time is a polynomial in n.

Conjecture 1. If the hard sphere or hard core model is in the fluid phase (say it exhibits
exponentially fast decay of correlations or the Markov chain above mixes rapidly), then the
repulsion inequality (and thus the Birthday Inequality) holds.

The intuition behind Conjecture 1 is that at a sufficiently low density, conditioning on
particles being repulsed from each other should have an essentially local effect, and locally,
conditioning on repulsion increases the volume covered by the union of balls around the
particles. However, beyond the fluid/solid phase transition, long-range correlations come
into play, and conditioning on the repulsion of particles can force them into global lattice-like
configurations with holes, and thus the volume covered may actually decrease. Note that
a model of random matchings of a given size on the d-dimensional lattice, the monomer-
dimer model, does not exhibit a phase transition [9], and Corollary 4 shows the the birthday
inequality holds at all densities.

Conjecture 1 has several consequences. First, it would give a mathematical proof that
the hard sphere model in dimension 24 undergoes a phase transition, which to the best
of our knowledge has not been proved yet in any dimension. The density at which the
birthday inequality fails would mark an upper bound on the critical density for the model,
as exponential decay of correlations (or fast mixing) could not hold.

Second, it would imply that the critical density in the fixed-size hard core model is upper
bounded by αld from Theorem 5, in particular showing that a phase transition occurs at
densities O(1/d) in Zd(n) or Qd. The best known analogous bounds in the hard core model

with fugacity parameter λ are λc = Õ(d−1/3) given by Peled and Samotij [15] improving the

bound of Õ(d−1/4) from Galvin and Kahn [7]. Proving Conjecture 1 would give the optimal
bound up to a constant factor λc = O(d−1) as the typical particle density α in the hard core
model with fugacity λ is bounded below by λ

6(1+λ) .

We also make the bold predictions that the critical density on Zd satisfies α∗d ∼ log 2/d
as d → ∞, and on Qd, α

∗
d ∼ 2 log 2/d. For the hard square model in continuous space we

conjecture that the phase transition occurs at a critical density α∗d ∼
2 log(2)d

2d
.



14 WILL PERKINS

Acknowledgments

Thanks to Alfredo Hubard for many fruitful discussions on this topic. Thanks to Peter
Winkler and Tyler Helmuth for their careful reading of a draft of this paper.

References

[1] K Bezdek and R Connelly. Pushing disks apart. J. Reine Angew. Math, 553:221–236, 2003.
[2] Lewis Bowen, Russell Lyons, Charles Radin, and Peter Winkler. Fluid-solid transition, in a hard-core

system. Physical review letters, 96(2):025701, 2006.
[3] Teena Carroll, David Galvin, and Prasad Tetali. Matchings and independent sets of a fixed size in regular

graphs. Journal of Combinatorial Theory, Series A, 116(7):1219–1227, 2009.
[4] Henry Cohn and Abhinav Kumar. The densest lattice in twenty-four dimensions. Electronic Research

Announcements of the American Mathematical Society, 10(7):58–67, 2004.
[5] Luc Devroye, András György, Gábor Lugosi, and Frederic Udina. High-dimensional random geometric

graphs and their clique number. Electronic Journal of Probability, 16:2481–2508, 2011.
[6] Persi Diaconis, Gilles Lebeau, and Laurent Michel. Geometric analysis for the metropolis algorithm on

lipschitz domains. Inventiones mathematicae, 185(2):239–281, 2011.
[7] David Galvin and Jeff Kahn. On phase transition in the hard-core model on zˆ d. Combinatorics, Prob-

ability and Computing, 13(02):137–164, 2004.
[8] Thomas P Hayes and Cristopher Moore. Lower bounds on the critical density in the hard disk model via

optimized metrics. arXiv preprint arXiv:1407.1930, 2014.
[9] Ole J Heilmann and Elliott H Lieb. Theory of monomer-dimer systems. Communications in Mathematical

Physics, 25(3):190–232, 1972.
[10] Liviu Ilinca and Jeff Kahn. Asymptotics of the upper matching conjecture. Journal of Combinatorial

Theory, Series A, 120(5):976–983, 2013.
[11] Ravi Kannan, Michael W Mahoney, and Ravi Montenegro. Rapid mixing of several markov chains for a

hard-core model. In Algorithms and computation, pages 663–675. Springer, 2003.
[12] Martin Kneser. Einige bemerkungen über das minkowskische flächenmass. Archiv der Mathematik,
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