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Abstract

In 1940 Joseph Edward and Maria Goeppert Mayer published their
influential book “Statistical Mechanics” which included beautiful
theorems about corrections to the ideal gas law (PV ∝ T ) in
terms of generating functions for three classes of graphs.
Furthermore they found surprising simple functional relations
between these generating functions. I will review this background
and some of the later development to set the stage for the new
progress to be presented by other speakers.



Atomistic models in statistical mechanics

I Container: Λ ⊂ Rd , V = volume of Λ.

I Number N of particles, random or fixed.

I Particles (x1, p1), ..., (xN , pN) at random positions xi ∈ Λ with
independent random isotropic momenta pi ∈ Rd

Definitions:

I Temperature T := Var
(
pi
)

common to all particles i

I Pressure P = expected rate of change of momentum per unit
area of ∂Λ
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Pressure

∂Λ



Ideal Gas

I N ∼ Poisson(zV )

I Particles x1, ..., xN uniformly distributed in Λ

Particles are Poisson events in Λ occuring at rate z per unit volume

distribution on {N = n} :
1

Zideal

zn

n!
dnx

Partition function Zideal :=
∞∑
n=0

zn

n!

∫
Λn

dnx = ez|Λ|
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Hard spheres

Equal radius spheres centred on x1, ..., xN

Distribution on {N = n}: 1

Z

zn

n!
1no spheres overlap dnx

Z =
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n=0

zn
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Why partition functions?

For bounded measurable functions on {particle configurations}
such as 1no spheres overlap

Lemma
PV ∝ T logZ , from now on PV=T logZ

Consequence for Ideal Gas: Z = ez|Λ| = eE[N] ⇒ Ideal
Gas Law (Clapeyron 1834) PV = TE[N].

Goal: for hard spheres compute the pressure via logZ .
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Inclusion/exclusion

1{no spheres intersect} =
∏

ij∈KN

(1− fij)

= 1{xi , xj overlap}

=
∑

G⊂KN

∏
ij∈G

(−fij)

Z =
∑
G∈G

zn

n!

∫
Λn

∏
ij∈G

(−fij) dnx

{graphs with vertices 1, . . . , n|∀n}
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Mayer expansion

Z =
∑
G∈G

zn

n!

∫
Λn

∏
ij∈G

(−fij) dnx

Theorem (Mayer theorem I)

logZ =
∑
G∈C

zn

n!

∫
Λn

∏
ij∈G

(−fij) dnx

{connected graphs with vertices 1, . . . , n|∀n}

Oliver Penrose reduced the sum over C to a sum over the set T of
tree graphs = minimally connected graphs.
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Define Kruskal map

For G in C(n) pick edges in order discarding those that form a loop.

41

8

6

5

7

k : G 7→ T tree subgraph, k : C(n) 7→ T (n)
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The maximal graph M(T )

Surjective: By construction, for any tree, k(T ) = T .

Given tree T there is a unique maximal graph M = M(T ) such
that k(M) = T .

All graphs G such that k(G ) = T satisfy T ⊂ G ⊂ M.
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The maximal graph M = M(T ) such that k(M) = T
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No graph with yellow edge 3 < max{7, 4} can map to the red tree.
Likewise for yellow edge 2 < max{5, 1, 7, 4}.
The graphs that map to T are the graphs that contain T and any
subset of the dotted lines.
M is all dotted and red edges.
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Lemma (Penrose resummation formula 1967)

∑
G∈C(n)

(−f )G =
∑

T∈T (n)

(−f )T (1− f )M(T )\T .

=
∏
ij∈G

(−fij )

∑
G :k(G)=T

(−f )G\T

∈ [0, 1] if fij ∈ [0, 1]Corollary

The Mayer expansion

P =
T

V
logZ =

T

V

∑
G∈C

zn

n!

∫
Λn

(−f )G dnx

is absolutely convergent for |z | × 2d × volume of sphere <
1

e
uniformly in V . It converges in disk limited by singularity on the
negative z axis.
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Equation of state for hard spheres

The ideal gas law PV = TE[N] is called an equation of state.

Note E[N]/V = density := ρ.

Equation of state for hard sphere gas when (for Λ a torus)

Problem: Eliminate z between

P

T
=

1

V
logZ (z), ρ = z

∂

∂z

1

V
logZ (z)
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logZ (z) =

1
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Blocks

The graph

is built from the blocks

linked at the red cutpoints. By definition blocks have no cutpoints.



Legendre Transform

Theorem (Equivalent to Mayer’s second theorem)

As formal power series the Legendre transform

F (ρ) := sup
µ

(µρ− 1

V
logZ (eµ))

of the generating function of connected graphs (AKA Mayer
expansion) is given by

F (ρ) = Fideal(ρ)− B(ρ)

where

B(ρ) :=
1

V

∑
G∈B

ρn

n!

∫
Λn

(−f )G dnx

is the generating function of blocks (connected graphs without
cutpoints).



Equation of state and virial expansion

1

T
P(eµ) = sup

ρ

(
µρ− F (ρ)

)
= F ′(ρ)ρ− F (ρ)

By theorem F (ρ) = Fideal(ρ)− B(ρ) = ρ log ρ− ρ− B(ρ)

1

T
P(eµ) = −ρB′(ρ) + ρ+ B(ρ)

Insert B(ρ) =
∑
n≥2

ρn

n!

∫
Λn

(−f )G dnx︸ ︷︷ ︸
bn

1

T
P(eµ) = ρ+

∑
n

1

n!
(−n + 1)bnρ

n



Problems

I Theory of generating functions for n-irreducible diagrams and
Legendre transform wrt n-body potentials?

I Direct proof of convergence of B(ρ)

I Edge irreducible versus cutpoints

Thermodynamics is a funny subject. The first time you go through
it, you don’t understand it at all. The second time you go through
it, you think you understand it, except for one or two points. The
third time you go through it, you know you don’t understand it,
but by that time you are so used to the subject, it doesn’t bother
you anymore.
Arnold Sommerfeld


