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1. Introduction

2. Gibbs measures and phase transitions

2.1. The hard sphere model. Consider the most basic model of a gas or a fluid: particles
represented by a random configuration of identical spheres in a large container, subject to
no forces between them except for the hard constraint that no two spheres can overlap. This
is the hard sphere model from statistical physics. If we imagine the container is a large box
(or torus) in Rd of volume n and each sphere is of volume 1, then as we vary the number of
spheres N , the occupation density, α = N/n, varies from 0 to the maximum sphere packing
density in d-dimensions, call this θ(d).

Let S be a bounded measurable region in Rd. Let rd be the radius of the ball of volume 1
in Rd.

Definition. The hard sphere model on S with k particles is a collection X of k unordered
points in S, uniformly distributed conditioned on the event that all pairs of points are at
distance at least 2rd.
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Figure 1. The hard sphere model at low and high density

We call this model the canonical ensemble to distinguish it from a slightly different model
introduced below.

The points X represent the centers of a sphere packing of spheres of volume 1. Note that
we don’t require that the entire sphere around a center fit in the set S - we can have centers
arbitrarily close to the boundary of S.

Suppose S is a large box of volume n in Rd. What do we expect to see in a typical
configuration of spheres at density α, that is k ∼ αn? If α is small we’d expect to see
disorder – the spheres look randomly jumbled, with no long-range order or organization.
If α is large, near the maximum sphere packing fraction θ(d), we might expect a typical
configuration from the model to look lattice-like and exhibit long range correlations. In fact
this is exactly what physicists have observed, through both computer experiments as well as
actual physical experiments with hard-sphere-like particles called colloids. Such a dramatic
shift in macroscopic properties on varying a parameter is called a phase transition. The phase
transition in the hard sphere model represents the transition of a gas into a solid or crystal.

Unfortunately, despite many years of study, it has not been proved mathematically that
such a phase transition occurs in this simple model.

What is the mathematical definition of a phase transition? We will present several equiv-
alent definitions later, but the most relevant definition for this course involves the partition
function of the model.

For x1, . . . , xk ∈ Rd, let D(x1, . . . , xk) be the event that d(xi, xj) > 2rd for all i 6= j ∈ [k].

Definition. The partition function of the canonical hard sphere model on a bounded, mea-
surable S ⊂ Rd with k spheres is

ẐS(k) =
1

k!

∫
Sk

1D(x1,...,xk) dx1 · · · dxk

The probability that k uniformly chosen unordered points in S form a packing of balls of
volume 1 is simply ẐS(k)/vol(S)k.
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Let Ck(S) be the set of configurations of unordered k-tuples of points from a bounded,
measurable region S ⊂ Rd. The probability that the centers Xk of the hard sphere model on
S at fugacity λ belong to Ak is

P[Xk ∈ Ak] =
1
k!

∫
Sk 1{{x1,...xk}∈Ak} · 1D(x1,...,xk) dx1 · · · dxk

ẐS(k)
,

and so the partition function acts as the normalizing constant of the probability distribution.
Despite this innocuous sounding role, partition functions will be the central object of interest
in this course. To give one example of why they play such an important role, let’s see how
they are connected with the idea of a phase transition in the hard sphere model.

Let Bn = Bn(d) be the box of volume n centered at the origin in Rd. For α ∈ (0, θ(d)), let

f̂Rd(α) = lim
n→∞

1

n
log ẐBn(bαnc).

This is the free energy of the hard sphere model at density α. The fact that this limit exists
follows from some general theory (subadditivity) but for now take it for granted. (Note that
up to a constant this is the large deviation rate function of the event that αn random points
placed in Bn are at pairwise distance at least 2rd). The limit is robust in the shape of the
growing region - we could have used a ball of volume n or some other shape instead.

The free energy in fact encompasses many of the interesting properties of the model. For
instance, it provides our first definition of a phase transition.

Definition. The canonical hard sphere model on Rd undergoes a phase transition at density
α∗ if the function f̂Rd(α) is non-analytic at α∗; that is, either f̂Rd or one of its higher
derivatives is discontinuous at α∗.

Note that a phase transition is only a property of a space of infinite volume like Rd or later
an infinite graph like Zd. For a finite region like Bn, the partition function is a polynomial
(and thus analytic) and so there can be no ‘finite volume’ phase transition.

The grand canonical ensemble. It will often be more convenient to work with a slightly
different hard sphere model, one in which the number of spheres itself is a random variable.
In statistical physics, the first model we defined is the canonical ensemble, and the next is
the grand canonical ensemble.

Definition. The grand canonical hard sphere model on a bounded measurable S ⊂ Rd at
fugacity λ is a set of centers X distributed according to a Poisson point process with intensity
λ conditioned on the event at all centers at are pairwise distance at least 2rd.

Definition. The partition function of the grand canonical hard sphere model is

ZS(λ) =
∞∑
k=0

λk

k!

∫
Sk

1D(x1,...,xk) dx1 · · · dxk

=
∞∑
k=0

λk · ẐS(k) .

We can again define the free energy of the hard sphere model:

fRd(λ) = lim
n→∞

1

n
logZBn(λ) .
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Definition. The grand canonical hard sphere model on Rd undergoes a phase transition at
fugacity λ∗ if the function fRd(λ) is non-analytic at λ∗; that is, either fRd or one of its higher
derivatives is discontinuous at λ∗.

Open Problem. Prove the hard sphere model exhibits a phase transition in some dimen-
sion d. That is, prove that the limiting free energy fRd(λ) (or f̂Rd(α)) has a non-analytic
point.

2.2. The hard-core model. While the hard sphere model presents fascinating mathemat-
ical challenges, we do not have a rigorous answer to its most pressing question, whether or
not it can help explain the universal phenomenon of freezing and crystallization. Is there any
way for us to simplify the model in some way that allows us to analyze the phase transition?

Happily, the answer is yes, that by discretizing the model in a specific way, we obtain a
model that does indeed provably exhibit a crystallization phase transition.

Definition. An independent set I ⊆ V (G) is a set of vertices of a graph G that induce no
edges. That is (u, v) /∈ E(G) for all u, v ∈ I.

The hard-core model is a probability distribution over the independent sets I(G) of a
graph G.

Definition. Let G be a finite graph and λ > 0. The hard-core model on G at fugacity λ
is a random independent set I drawn from I(G) according to the distribution

Pr[I = I] =
λ|I|

ZG(λ)
,

where

ZG(λ) =
∑

I∈I(G)

λ|I|

is the partition function of the hard-core model.

Let Λd,n be the n1/d × · · · × n1/d; that is the d-dimensional square grid with n vertices.

We can define the free energy of the hard-core model on Zd to be:

fZd(λ) = lim
n→∞

1

n
logZΛd,n(λ) .

The hard-core model on Zd exhibits a phase transition at λ∗ if fZd(λ) is non-analytic there.

Let v0 be the center of the box Λd,n. Let Λeven
d,n be Λd,n with all the even sites on the

boundary occupied, and likewise with Λodd
d,n .

We say the hard-core model on Zd at fugacity λ is in the uniqueness regime if

lim
n→∞

Pr
Λeven
d,n ,λ

[v0 ∈ I] = lim
n→∞

Pr
Λodd
d,n ,λ

[v0 ∈ I] .

In other words, there is a unique infinite volume hard-core distribution at fugacity λ. A
phase transition occurs at λ∗ if the model switches from uniqueness to non-uniqueness (or
vice versa).

We can also define the phase transition in terms of decay of correlations.



6 WILL PERKINS

Figure 2. The hard-core model at low and high density

Figure 3. The spatial Markov property

The spatial Markov property. For a set of vertices U ⊆ V (G), the neighborhood of U is
N(U) = {x : x /∈ U, x ∼ v for some v ∈ U}. Then for any subset sU ⊆ U ,

Pr[I ∩ U = sU
∣∣I ∩ U c] = Pr[I ∩ U = sU

∣∣I ∩N(U)] .

If we condition on the ‘spins’ (occupied / unoccupied) of the boundary of a set U , then
what happens on U and outside the boundary are independent.

Open Problem. Let λc(d) be the smallest λ at which fZd(λ) is not analytic. Determine
the asymptotics of λc(d) as d → ∞. It is known that λc(d) = Ω(1/d) [53] and λc(d) =

O(log2 d/d1/3) [40].

2.3. The monomer-dimer model.

Definition. A matching M in a graph G is a collection of edges which share no endpoints.
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Figure 4. The monomer-dimer model

We consider the empty set of edges to be a matching. The size of a matching M , |M |,
is its number of edges. A perfect matching is a matching that saturates all vertices, that is
|M | = |V (G)|/2.

Let M(G) be the set of all matchings of G (we consider the empty set of edges to be a
matching). The monomer-dimer model is a random matching M drawn fromM(G) according
to the probability distribution

Pr[M = M ] =
λ|M |

Zmatch
G (λ)

,

where |M | is the number of edges in the matching M and the partition function is

Zmatch
G (λ) =

∑
M∈M(G)

λ|M |.

There are many similarities between the hard-core model and the monomer-dimer model;
in fact, the monomer-dimer model on G is the hard-core model on the line graph L(G), the
graph with vertex set E(G) and edges between edges of G that share a common vertex.

In some important ways, however, the monomer-dimer model is very different than the
hard-core model. It is a deep theorem of Heilman and Lieb [31] that the monomer-dimer
model does not exhibit a phase transition on any lattice. The proof uses the Lee-Yang theory
of zeros of partition functions and phase transitions and the result follows from the fact that
all of the roots of the equation

Zmatch
G (λ) = 0

are real numbers for any graph G. Or in other words, the hard-core partition function ZG(λ)
has only real roots as log as G is the line graph of some other graph H. This result was
generalized by Chudnovsky and Seymour [10] who showed that ZG(λ) has only real roots for
any claw-free graph G; that is, any graph G that avoids an induced star with three leafs.

Open Problem. Consider infinite, vertex-transitive graphs. We know that bipartite
graphs with sufficient expansion (eg. Zd) exhibit a hard-core phase transition. We know
that line graphs (and claw-free graphs) do not (Heilman-Lieb theorem, Chudnovsky Sey-
mour). What about all the graphs in between? That is, graphs that have claws but whose
number of ground states is infinite.
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Figure 5. The lattice for the discrete hard square model

2.4. The Potts model. The Potts model was first studied by Renfrey Potts [43] in his PhD
thesis, directed by his advisor Cyril Domb. It is a q-spin generalization of the 2-spin Ising
model [32] and is an idealization of a magnetic material.

For a graph G and an assignment χ of q-colors to each vertex of G, let m(G,χ) denote the
number of monochromatic edges of G under χ. The Potts model at inverse temperature β is
a random q-coloring χ of G chosen according to the distribution

Pr
G,β

[χ = χ] =
e−βm(G,χ)

ZqG(β)
,

where

ZqG(β) =
∑

χ:V (G)→[q]

e−βm(G,χ)

is the q-color Potts model partition function.

When β > 0 the model is anti-ferromagnetic: colorings with few monochromatic edges are
preferred. When β < 0, the model is ferromagnetic: colorings with many monochromatic
edges are preferred.

2.5. Gibbs measures.

Further reading. For an introduction to the hard sphere model by a physicist aimed at
mathematicians, see Harmut Löwen’s survey [39]

For more on phase transition in systems with hard constraints and their relation to com-
binatorics, see Brightwell and Winkler [8]

For background on the Potts model and its partition function see the surveys of Wu [58]
and Sokal [50], and for applications in combinatorics see the survey of Welsh and Morino [57].

Exercises.

(1) Show that the grand canonical hard sphere partition function on any bounded mea-

surable S satisfies ZS(λ) ≤ eλ·vol(S).



GIBBS MEASURES IN STATISTICAL PHYSICS AND COMBINATORICS (DRAFT) 9

(2) Compute the hard-core partition function ZSk(λ) for the graph Sk, the star on k
leaves. Compute the probability that the center of the star is in the random indepen-
dent set I.

(3) Compute the hard-core partition function ZKd,d(λ) where Kd,d is the complete d-
regular bipartite graph on 2d vertices.

(4) Compute the hard-core partition function ZG(λ) of the cycles C3, C4, C5.
(5) Compute the hard-core partition function of the cycle Cn.
(6) Prove that the 1-dimensional hard-core model on Z does not exhibit a phase transi-

tion, by computing the limiting free energy

f(λ) = lim
n→∞

1

n
logZCn(λ)

and showing that it is a real analytic function of λ.
(7) Suppose G is the disjoint union of two graphs H1 and H2. Show that ZG(λ) =

ZH1(λ) · ZH2(λ).
(8) Suppose v is a vertex in some graph with no edges in its neighborhood. Call a vertex

u uncovered with respect to an independent set I if N(u) ∩ I = ∅. Consider the
hard-core model on G at fugacity λ and calculate the probability that v is uncovered
given that v has exactly j uncovered neighbors.

(9) Describe the line graph of the infinite graph Zd.
(10) Construct an infinite graph that is claw-free but not the line graph of any graph.
(11) Prove that the following is an alternative description of the hard-core model on G. Let

I be a random subset of V (G), each vertex included independently with probability
λ

1+λ , conditioned on the event that the vertices form and independent set.

3. Gibbs measures in extremal combinatorics

While Gibbs measures were originally developed in statistical physics, their mathematical
properties have proved tremendously useful across many different scientific disciplines, in-
cluding statistics, computer science, and machine learning where they appear under various
names including Markov random fields, probabilistic graphical models, Boltzmann distribu-
tions, and log-linear models.

The majority of this course will focus on how Gibbs measures can be used to prove results
in extremal graph theory.

3.1. Graph polynomials and partition functions. We begin by observing that certain
partition functions from statistical physics arise in graph theory as graph polynomials.

The hard-core partition function ZG(λ) is the independence polynomial. The independence
polynomial can also be thought of as the generating function for the sequence i0(G), i1(G), . . .
where ik(G) denotes the number of independent sets of size k in G:

ZG(λ) =
∑
k≥0

ikλ
k.

Important parameters in graph theory can be computed using the independence polynomial.
For example, ZG(1) counts the total number of independent sets of G, i(G). The order of
the highest term is the independence number, α(G), the size of the largest independent set
of G. The highest order coefficient of the independence polynomial counts the number of
maximum independent sets in G.
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Likewise, the monomer-dimer partition function is the matching generating function (a
close relative of the matching polynomial):

Zmatch
G (λ) =

∑
k≥0

mk(G)λk

where mk(G) is the number of matchings of size k in G. The matching number ν(G) is the
order of the highest term. If ν(G) = 1

2 |V (G)|, then G has a perfect matching, a matching
that saturates all vertices. In that case m|V (G)|/2(G) counts the number of perfect matchings
of G.

3.2. Extremal results. The field of extremal combinatorics asks for the maximum and min-
imum of various graph parameters over different classes of graphs. Some examples of classic
theorems from extremal combinatorics are Mantel’s Theorem which answers the question
which graph on n vertices containing no triangles has the most edges? (Answer: the com-
plete balanced bipartite graph with ∼ n2/4 edges); or Dirac’s Theorem: which graph on n
vertices containing no Hamilton cycle has the largest minimum degree? (Answer: minimum
degree n/2 guarantees a Hamilton cycle; this is tight by taking two disjoint cliques of size n/2
each). In Lecture 4 we will discuss an important branch of extremal combinatorics, Ramsey
theory.

Here we focus on extremal results for bounded-degree graphs.

3.2.1. Independent sets in regular graphs. Which d-regular graph has the most independent
sets? This question was first raised in the context of number theory by Andrew Granville, and
the first approximate answer was given by Noga Alon [2] who applied the result to problems
in combinatorial group theory.

Jeff Kahn gave a tight answer in the case of d-regular bipartite graphs.

Theorem 1 (Kahn [35]). Let 2d divide n Then for any d-regular, bipartite graph G on n
vertices,

i(G) ≤ i(Hd,n) =
(

2d+1 − 1
)n/2d

,

where Hd,n is the graph consisting of n/2d copies of Kd,d.

In terms of the independence polynomial, we can rephrase this as: for any d-regular,
bipartite G,

ZG(1) ≤ ZKd,d(1)n/2d .

Kahn’s proof is via the entropy method. Recall the entropy of a discrete random variable
Y :

H(Y ) = −
∑
y

Pr[Y = y] log Pr[Y = y] .

See Appendix B.2 for the basics of entropy from information theory. See also Galvin’s lecture
notes on the entropy method [27] for an exposition of Theorem 1 and extensions. The main
tool we will use is Shearer’s Lemma.
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Lemma 2 (Shearer’s Lemma [11]). Let F be a family of subsets of [n] = {1, . . . n} so that
each element i ∈ [n] is contained in at least t sets of F . For a (random) vector (X1, . . . Xn)
and a set F ⊆ [n], let XF = (Xi)i∈F . Then

H(X1, . . . Xn) ≤ 1

t

∑
F∈F

H(XF ) .

Proof of Theorem 1. Let G be a d-regular, n vertex graph with bipartition (L,R). Let I be
an independent set chosen uniformly from all the independent sets of G. Since I is uniform,
we have

H(I) = log i(G) ,

and so we aim to show

H(I) ≤ n

2d
log
(

2d+1 − 1
)
.

Order the vertices of G v1, . . . vn with the first n/2 in L and the rest in R. We can express
the random independent set I as a random vector of 0’s and 1’s, (X1, . . .Xn) where Xi = 1 if
vi ∈ I. Let XL = (X1, . . .Xn/2) and XR = (Xn/2+1, . . .Xn). For a vertex v, XN(v) denotes
Xu1 , . . .Xud where u1, . . . ud are the neighbors of v. By the Chain Rule for entropy we have

H(I) = H(X1, . . . Xn) = H(XL) +H(XL|XR)

≤ H(X1, . . . Xn) = H(XL) +

n/2∑
i=1

H(Xi|XN(vi))

by subadditivity and monotonicity of conditioning. Now we can apply Shearer’s Lemma to
H(XL) with the family of sets F being the neighborhoods N(v1), . . . N(vn/2); each i ∈ [n/2]
is covered by exactly d sets since G is d-regular. This gives

H(I) ≤
n/2∑
i=1

1

d
H(XN(vi)) +H(Xi|XN(vi)) .(1)

Now we bound each term by conditioning on the event that vi is uncovered, that is, N(v)∩I =
∅. Let q(vi) = Pr[N(vi) ∩ I = ∅]. Then

H(XN(vi)) = −q(vi) log q(vi)− (1− q(vi)) log(1− q(vi)) + (1− q(vi))H(XN(vi)|N(v) ∩ I = ∅)

≤ q(vi) log
1

q(vi)
+ (1− q(vi)) log

(
2d − 1

1− q(vi)

)
using the bound H(Y) ≤ log (|support(Y)|) in the last step. We can also write

H(Xi|XN(vi)) = q(vi) log(2) .

Putting these together gives

H(XN(vi)) + d ·H(Xi|XN(vi)) = q(vi) · log

(
2d

q(vi)

)
+ (1− q(vi)) · log

(
2d − 1

1− q(vi)

)
≤ log(2d+1 − 1) by Jensen’s Inequality .

Substituting this back into (1), we obtain

H(I) ≤ n

2d
log(2d+1 − 1)

as desired. �
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3.2.2. Bregman’s Theorem.

Theorem 3 (Bregman [7]). Let A be an n × n matrix with {0, 1}-valued entries and row
sums d1, . . . dn. Then

perm(A) ≤
n∏
i=1

(di!)
1/di .

Let mperf(G) denote the number of perfect matchings of a graph G.

Corollary 4. Suppose G is a bipartite graph on two parts of n/2 vertices each, with left
degrees d1, . . . dn/2, then

mperf(G) ≤
n/2∏
i=1

(di!)
1/di .

In particular, if 2d divides n, and G is a d-regular bipartite graph, then

mperf(G) ≤ mperf(Hd,n).

In the case of d-regular bipartite graphs, Bregman’s theorem states that

mperf(G) ≤ mperf(Kd,d)
n/2d .

Proof of Theorem 3. The proof we present is due to Radhakrishnan [44]. Let G be a bipartite
graph on two sets (L,R) of n/2 vertices each with left degrees d1, . . . dn/2. Let M be a
uniformly random perfect matching from G.

Suppose V (G) = L ∪ R with L = {u1, . . . un/2} and R = {v1, . . . vn/2}. We view a perfect
matching in G as a permutation σ of [n/2] so that (ui, vσ(i)) ∈ E(G). Let S be the set of all
such σ and let σ be a uniformly random element of S.

Since σ is chosen uniformly from S, and |S| = mperf(G), we have

logmperf(G) = H(σ) .

So our goal is to prove the upper bound

H(σ) ≤
n/2∑
i=1

log di!

di
.

Let τ be a permutation of [n/2]. Then we will uncover the permutation σ in the order
determined by τ :

σ(τ(1)),σ(τ(2)), . . .σ(τ(n/2)) .

By the chain rule of entropy, we have

H(σ) =

n/2∑
i=1

H(σ(τ(i))|σ(τ(1)), . . .σ(τ(i− 1))) .

Since this is true for every τ , we can take the expectation over a uniformly random τ .

H(σ) =

n/2∑
i=1

EτH(σ(τ (i))|σ(τ (1)), . . .σ(τ (i− 1))) .
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For τ and i fixed, let k be such that τ(k) = i. Then we can write

H(σ) =

n/2∑
i=1

EτH(σ(i)|σ(τ (1)), . . .σ(τ (k − 1))) .

Now let Ri(σ, τ) be the number of neighbors of ui that have not be revealed by
σ(τ(1)), . . . σ(τ(k − 1)). Then using the fact that H(Y ) ≤ log |supp(Y )|,

H(σ) ≤
n/2∑
i=1

Eτ

di∑
j=1

Pr
σ

[|Ri(σ, τ )| = j] log j

=

n/2∑
i=1

di∑
j=1

Pr
σ,τ

[|Ri(σ, τ )| = j] log j .

Now for any fixed σ, Prτ [|Ri(σ, τ )| = j] = 1/di by symmetry, and so

H(σ) ≤
n/2∑
i=1

1

di

di∑
j=1

log j

=

n/2∑
i=1

log di!

di

as desired. �

3.3. Extensions and reductions. Galvin and Tetali [29] proved a very broad generalization
of Kahn’s result. To describe it we need a definition.

Definition. Let G and H be two finite graphs. A map φ : V (G) → V (H) is a homomor-
phism from G to H if for every (u, v) ∈ E(G), (φ(u), φ(v)) ∈ E(H). Let hom(G,H) denote
the number of homomorphisms from G to H.

Example. Suppose H ind is the graph on two vertices w1, w2, with an edge between w1 and
w2 and a self-loop on w2. Then homomorphisms from G to H ind correspond to independent
sets, with the vertices of the independent set given by φ−1(w1), and so hom(G,H ind) = i(G),
the number of independent sets of G.

Example. Homomorphisms from G to Kq, the complete graph on q vertices, correspond to
proper q-colorings of V (G).

Jeff Kahn’s result on independent sets can be restated as the fact that

hom(G,H ind) ≤ hom(Kd,d, H
ind)n/2d

for any d-regular, bipartite G. What Galvin and Tetali show is that this result holds in
complete generality over the choice of the target graph H, at least over bipartite regular
graphs.

Theorem 5. Let H be any graph, with or without self-loops, and let G be any d-regular,
bipartite graph. Then

hom(G,H) ≤ hom(Kd,d, H)n/2d .
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Theorem 6 (Kahn [35], Galvin-Tetali [29], Zhao [59]). For any d-regular graph G and any
λ > 0,

1

|V (G)|
logZG(λ) ≤ 1

2d
logZKd,d(λ).

Removing the bipartite restriction, as Zhao did for independent sets, is not possible in
general. (For a simple example see the exercises). Zhao [60] found a large family of H
for which the statement for general d-regular graphs reduces to the bipartite statement.
Sernau [47] found a large such family and disproved a conjecture of Galvin [26] that either
Kd,d or Kd+1 is always the maximizing graph.

One specific target graph H that arises in statistical physics is HWR, the graph on three
vertices, w1, w2, w3, each with a self-loop, and w2 joined to both w1 and w3. Homomorphisms
from G to HWR correspond to valid configurations in the Widom-Rowlinson model in which
particles of two different types can occupy sites on a lattice, but particles of different types
are forbidden from neighboring each other. (The vertices w1 and w3 correspond to the two
different types, while w2 corresponds to an empty site). The extremal graph for Widom-
Rowlinson configurations is the clique.

Theorem 7 (Cohen, Perkins, Tetali [13]; Sernau [47]). For all d-regular G,

hom(G,HWR) ≤ hom(Kd+1, H
WR)n/(d+1) .

This theorem was first proved with the methods of Section 4, but it was later observed [12,
47] that it follows from a reduction from the case of independent sets.

Perhaps the most outstanding unresolved case of target graph H is that of proper colorings
(H = Kq). Galvin and Tetali conjectured that a union of Kd,d’s maximize the number of
q-colorings over all d-regular graphs.

Conjecture 8 (Galvin, Tetali [29]). For all d-regular G, and all q ≥ 2,

hom(G,Kq) ≤ hom(Kd,d,Kq)
n/2d .

Galvin and Tetali prove this for bipartite G with their general theorem. Partial results
towards this conjecture have been proved [60, 26, 28]. Recently the case d = 3 and arbitrary
q was resolved [23]. The proof proceeds via the Potts model from statistical physics; we will
return to this in Lecture 5.

Further reading. Zhao wrote a recent survey on extremal problems for homomorphism
counts in regular graph [61]. See also Csikvári [17] for further results and open problems in
this area.

Exercises.

(1) Let H be the graph consisting of two vertices each with self loops but no edge joining

the two. Show that hom(Kd+1, H)1/(d+1) > hom(Kd,d, H)1/2d.
(2) Let G be any graph. Let G×K2 be the bipartite double cover of G. That is, G×K2

has vertex set V (G)× {0, 1} with an edge between (u, i) and (v, j) if uv ∈ E(G) and
i = 0, j = 1 or i = 1, j = 0. Prove that

i(G)2 ≤ i(G×K2).

Deduce that Kahn’s theorem on independent sets in d-regular bipartite graphs can
be extended to all d-regular graphs. This is Zhao’s proof [59].
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(3) Prove (in an elementary way) that for all d-regular G on n vertices,

in/2(G) ≤ id(Kd,d)
n/2d.

(4) For a given indpendent set I and a specified vertex v ∈ V (G), let us say that a
neighbor u of v is externally uncovered if no neighbor of u that is a second neighbor
of v is in I. What is the probability that a vertex v is uncovered, given that the
subgraph induced by its externally uncovered neighbors is isomorphic to a graph H?

(5) Let G,H be two graphs on n vertices each. Prove that if ZMG (λ) ≥ ZMH (λ) for all
λ > 0, then mperf(G) ≥ mperf(H).

(6) By going through the proof of Theorem 1, show that equality in the theorem is
attained only by Kd,d or Hd,n.

4. Occupancy fractions and optimization

In this section we present a new approach to proving extremal theorems for sparse graphs.
We will prove extremal results for partition functions and graph polynomials by optimizing
the logarithmic derivative of a given partition function over a given class of graphs. By
integrating we obtain the corresponding result for the partition function. The logarithmic
derivative has a probabilistic interpretation as the expectation of an observable of the relevant
model from statistical physics, and so working directly with the model we impose local
probabilistic constraints bases on the graph structure and parameters of the model, then relax
the optimization problem to all local probability distributions satisfying these constraints.

An observable of a Gibbs measure is simply a random variable, a function of the random
configuration. One particularly important observable is the energy. In general we can de-
scribe a Gibbs distribution in terms of a Hamiltonian, or energy function, H(σ) mapping
configurations to real numbers. We then write

Pr[σ = σ] =
e−βH(σ)

Z(β)
,

where β is called the inverse temperature and the partition function Z(β) =
∑

σ e
−βH(σ) is

again the normalizing constant.

The energy of the random configuration H(σ) is one example of an observable. The
expectation of this observable is

EβH(σ) =
∑
σ

H(σ) Pr
β

[σ = σ]

=
∑
σ

H(σ)
e−βH(σ)

Z(β)

= −Z
′(β)

Z(β)

= −(logZ(β))′ .

This simple calculation is the key to the method that follows.

4.1. The occupancy fraction of the hard-core model. We start with independent sets
and the hard-core model, where the relevant observable is the occupancy fraction.
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Definition 9. The occupancy fraction of the hard-core model on a graph G at fugacity λ is
the expected fraction of vertices that appear in the random independent set:

αG(λ) =
1

|V (G)|
EG,λ|I|.

We begin by collecting some basic facts about the occupancy fraction.

Proposition 10. The occupancy fraction is λ times the derivative of the free energy:

αG(λ) = λ ·
(

1

|V (G)|
logZG(λ)

)′
.

Proof. We write

αG(λ) =
1

|V (G)|
EG,λ|I|

=
1

|V (G)|
∑

I∈I(G)

|I| · Pr
G,λ

[I = I]

=
1

|V (G)|
∑

I∈I(G)

|I| · λ|I|

ZG(λ)

=
λ

|V (G)|
∑

I∈I(G)

|I| · λ
|I|−1

ZG(λ)

=
λ

|V (G)|
Z ′G(λ)

ZG(λ)

= λ ·
(

1

|V (G)|
logZG(λ)

)′
.

�

Proposition 11. The occupancy fraction αG(λ) is an increasing function of λ.

Proof. Writing ZG for ZG(λ),

|V (G)| · α′G(λ) =

(
λZ ′G
ZG

)′
=
Z ′G
ZG

+
λZGZ

′′
G − λ(Z ′G)2

Z2
G

=
Z ′G
ZG

+
1

λ

(
λ2Z ′′G
ZG

−
(
λZ ′G
ZG

)2
)

=
EG,λ|I|+ EG,λ(|I|2)− EG,λ|I| − (EG,λ|I|)2

λ

=
varG,λ(|I|)

λ
> 0 .

�

Given Proposition 10, we make a simple observation. If for all G ∈ G and all λ > 0 we
have αG(λ) ≤ αG0(λ), then we have

1

|V (G)|
logZG(λ) ≤ 1

|V (G0)|
logZG0(λ)
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for all λ > 0. This follows from a bit of calculus:

1

|V (G)|
logZG(λ) =

1

|V (G)|
logZG(0) +

∫ λ

0

(
1

|V (G)|
logZG(t)

)′
dt

=

∫ λ

0

(
1

|V (G)|
logZG(t)

)′
dt

≤
∫ λ

0

(
1

|V (G)|
logZG0(t)

)′
dt

=
1

|V (G0)|
logZG0(λ) .

We can use this observation to prove a strengthening of Theorem 6.

Theorem 12 (Davies, Jenssen, Perkins, Roberts [20]). For any d-regular graph G, and any
λ > 0,

αG(λ) ≤ αKd,d(λ) =
λ(1 + λ)d−1

2(1 + λ)d − 1
.

Proof of Theorem 12. We prove this first for triangle-free G to illustrate the method.

We say v is uncovered with respect to an independent set I if N(v) ∩ I = ∅.
Consider the hard-core model on a d-regular, triangle-free G on n vertices.

Fact 1: Pr[v ∈ I|v uncovered] = λ
1+λ .

Fact 2: Pr[v uncovered|v has j uncovered neighbors] = (1 + λ)−j .

Fact 2 relies on the fact that G is triangle-free: the graph induced by the uncovered neighbors
of v consists of isolated vertices.

Now we write αG(λ) in two ways:

αG(λ) =
1

n

∑
v∈V (G)

Pr[v ∈ I]

=
1

n

λ

1 + λ

∑
v∈V (G)

Pr[v uncovered] by Fact 1

=
1

n

λ

1 + λ

∑
v∈V (G)

d∑
j=0

Pr[v has j uncovered neighbors] · (1 + λ)−j by Fact 2,

and

αG(λ) =
1

n

1

d

∑
v∈V (G)

∑
u∼v

Pr[u ∈ I] since G is d-regular

=
1

n

1

d

λ

1 + λ

∑
v∈V (G)

∑
u∼v

Pr[u uncovered] by Fact 1.

Now consider the following two-part experiment: pick I from the hard-core model on G and
independently choose v uniformly at random from V (G). Let Y be the number of uncovered
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neighbors of v with respect to I. Now our two expressions for αG(λ) can be interpreted as
expectations over Y.

αG(λ) =
λ

1 + λ
EG,λ(1 + λ)−Y

αG(λ) =
1

d

λ

1 + λ
EG,λY .

Thus the identity

(2) EG,λ(1 + λ)−Y =
1

d
EG,λY

holds for all d-regular triangle-free graphs G.

Now the idea is to relax the maximization problem; instead of maximizing αG(λ) over all
d-regular graphs, we can maximize λ

1+λE(1 +λ)−Y over all distributions of random variables

Y that are bounded between 0 and d and satisfy the constraint (2).

It is not too hard to see that to maximize EY subject to these constraints, we must put
all of the probability mass of Y on 0 and d. Because of the constraint (2), there is a unique
such distribution.

Now fix a vertex v in Kd,d. If any vertex on v’s side of the bipartition is in I, then v has 0
uncovered neighbors. If no vertex on the side is in I, then v has d uncovered neighbors. So
the distribution of Y induced by Kd,d (or Hd,n) is exactly the unique distribution satisfying
the constraints that is supported on 0 and d. And therefore,

αG(λ) ≤ αKd,d(λ) .

Now we give the full proof for graphs that may contain triangles.

Let G be a d-regular n-vertex graph (with or without triangles). Do the following two
part experiment: sample I from the hard-core model on G at fugacity λ, and independently
choose v uniformly from V (G). Previously we considered the random variable Y counting
the number of uncovered neighbors of v. When G was triangle-free we knew there were no
edges between these uncovered vertices, but now we must consider these potential edges. Let
H be the graph induced by the uncovered neighbors of v; H is a random graph over the
randomness in our two-part experiment.

We now can write αG(λ) in two ways, as expectations involving H.

αG(λ) =
λ

1 + λ
Pr
G,λ

[v uncovered] =
λ

1 + λ
EG,λ

[
1

ZH(λ)

]
αG(λ) =

1

d
EG,λ[I ∩N(v)] =

λ

d
EG,λ

[
Z ′H(λ)

ZH(λ)

]
,

and so for any d-regular graph G, we have the identity

λ

1 + λ
EG,λ

[
1

ZH(λ)

]
=
λ

d
EG,λ

[
Z ′H(λ)

ZH(λ)

]
.(3)

Now again we can relax our optimization problem from maximizing αG over all d-regular

graphs, to maximizing λ
1+λE

[
1

ZH(λ)

]
over all possible distributions H on Hd, the set of

graphs on at most d vertices, satisfying the constraint (3).
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We claim that the unique maximizing distribution is the one distribution supported on the
empty graph, ∅, and the graph of d isolated vertices, Kd. This is the distribution induced by
Kd,d (or Hd,n) and is given by

Pr
Kd,d

(H = ∅) =
(1 + λ)d − 1

2(1 + λ)d − 1

Pr
Kd,d

(H = Kd) =
(1 + λ)d

2(1 + λ)d − 1
.

To show that this distribution is the maximizer we will use linear programming (see Appen-
dix B.3 for some basic facts about linear programming).

Both our objective function and our constraint are linear functions of the variables
{p(H)}H∈Hd , so we can pose the relaxation as a linear program.

maximize
∑
H∈Hd

p(H) · λ

1 + λ

1

ZH(λ)

subject to p(H) ≥ 0 ∀H ∈ Hd∑
H∈Hd

p(H) = 1

∑
H∈Hd

p(H)

[
λ

1 + λ

1

ZH(λ)
− λ

d

Z ′H(λ)

ZH(λ)

]
= 0 .

The first two constraints insure that the variables p(H) form a probability distribution; the
last is constraint (3).

Our candidate solution is p(∅) = (1+λ)d−1
2(1+λ)d−1

, p(Kd) = (1+λ)d

2(1+λ)d−1
, with objective value

αKd,d(λ) = λ(1+λ)d−1

2(1+λ)d−1
. To prove that this solution is optimal (and thus prove the theorem),

we need to find some feasible solution to the dual with objective value αKd,d(λ).

The dual linear program is:

minimize Λp

subject to Λp + Λc ·
[

λ

1 + λ

1

ZH(λ)
− λ

d

Z ′H(λ)

ZH(λ)

]
≥ λ

1 + λ

1

ZH(λ)
for all H ∈ Hd .

For each variable of the primal, indexed by H ∈ Hd, we have a dual constraint. For each con-
straint in the primal (not including the non-negativity constraint), we have a dual variable, in
this case Λp corresponding to the probability constraint (summing to 1) and Λc corresponding
to the remaining constraint. (Note that we do not have non-negativity constraints Λp,Λc ≥ 0
in the dual because the corresponding primal constraints were equality constraints).

Now our task becomes: find a feasible dual solution with Λp = αKd,d(λ). What should
we choose for Λc? By complementary slackness in linear programming, the dual constraint
corresponding to any primal variable that is strictly positive in an optimal solution must
hold with equality in an optimal dual solution. In other words, we expect the constraints
corresponding to H = ∅,Kd to hold with equality. This allows us to solve for a candidate
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value for Λc. Using Z∅(λ) = 1 and Z ′∅(λ) = 0, we have the equation

αKd,d(λ) + Λc

[
λ

1 + λ
− 0

]
=

λ

1 + λ
.

Solving for Λc gives

Λc =
(1 + λ)d − 1

2(1 + λ)d − 1
.

Now with this choice of Λc, and Λp = αKd,d(λ) = λ(1+λ)d−1

2(1+λ)d−1
, our dual constraint for H ∈ Hd

becomes:

λ(1 + λ)d−1

2(1 + λ)d − 1
+

(1 + λ)d − 1

2(1 + λ)d − 1

[
λ

1 + λ

1

ZH(λ)
− λ

d

Z ′H(λ)

ZH(λ)

]
≥ λ

1 + λ

1

ZH(λ)
.(4)

Multiplying through by ZH(λ) · (2(1 + λ)d − 1) and simplifying, (4) reduces to

λd(1 + λ)d−1

(1 + λ)d − 1
≥

λZ ′H(λ)

ZH(λ)− 1
,(5)

and we must show this holds for all H ∈ Hd (except for H = ∅ for which we know already the
dual constraint holds with equality). Luckily (5) has a nice probabilistic interpretation: the
RHS is simply EH,λ

[
|I|
∣∣|I| ≥ 1

]
, the expected size of the random independent set given that

it is not empty, and the LHS is the same for the graph of d isolate vertices, Kd. Proving (5)
is left for the exercises, and this completes the proof. �

4.2. The general method. Here we give an overview of a general method suggested by the
proof of Theorem 12 above.

4.3. Graph convergence and optimization. In the realm of dense graphs (graphs on n
vertices with Θ(n) edges), there is a beautiful notion of convergence for a sequence of graphs
based on subgraph densities due to L S and others (see Lovasz’s textbook [38] as well as .. ).

Graph convergence goes hand in hand with a powerful method for solving extremal prob-
lems for dense graphs, the method of Flag algebras developed by Razboroov [45].

For sparse graphs, there is a notion of convergence due to Bejamini and Schramm [4].

Open Problem. For a simple class of graphs and definition of local view (e.g. the number
of occupied neighbors of a random vertex in the hard-core model on 3-regular graphs) can
we completely characterize (the closure of) the set of all distributions on local views that
are achievable by graphs?

4.4. Matchings.

Theorem 13 (Davies, Jenssen, Perkins, Roberts [20]). For any d-regular graph G, and any
λ > 0,

αmatch
G (λ) ≤ αmatch

Kd,d
(λ).

Corollary 14. For any d-regular graph G, and any λ > 0,

1

|V (G)|
logZmatch

G (λ) ≤ 1

2d
logZmatch

Kd,d
(λ).
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The proof of Theorem 13 follows the same idea as the proof of Theorem 12 but is more
technically involved.

Consider sampling a random matching M from the monomer-dimer model on a d-regular
graph G at fugacity λ and independently choosing an edge e uniformly at random from
E(G). The closed neighborhood of an edge e, N(e), is e along with all its incident edges.
The externally uncovered neighborhood of e with respect to the matching M is the set of edges
of N(e) that are not incident to any edge in M ∩ N(e)c. That is, the externally uncovered
neighborhood of e are those edges that are not blocked from being in the random matching
by some edge f outside of N(e). Call the subgraph induced by the externally uncovered
neighborhood C = C(M, e). C always includes at least one edge, namely e itself. Note that
the presence or absence of edges in N(e) in the matching have no effect on C.

Now we can write the edge occupancy fraction as an expectation over C.

αmatch
G (λ) =

1

|E(G)|
∑

e∈E(G)

Pr
G,λ

[e ∈M]

=
1

|E(G)|
∑

e∈E(G)

EG,λ
[

λ

ZC(M,e)(λ)

]

= EG,λ
[

λ

ZC(λ)

]
.

The second equality above uses the spatial Markov property of the monomer-dimer model.
Alternatively, we can use the regularity of G to write

αmatch
G (λ) =

1

2d− 1

1

|E(G)|
∑

e∈E(G)

Pr
G,λ

[e ∈M] +
∑
f∼e

Pr
G,λ

[f ∈M]


=

1

2d− 1

1

|E(G)|
∑

e∈E(G)

EG,λ|M ∩N(e)|

=
1

2d− 1
EG,λ

[
λZ ′C(λ)

ZC(λ)

]
.

The partition function of an externally neighborhood C can be written in terms of three
parameters, L,R,K, where L,R are the number of edges incident to the left and right vertices
of e respectively that are not in a triangle, and K denotes the number of triangles in C. Let
Zl,r,k denote the partition function of C such that L = l, R = r,K = k. Then we can compute

Zl,r,k = 1 + λ+ (l + r + 2k)λ+ [k2 + k(l + r − 1) + lr]λ2 .

Open Problem. Determine the minimum of 1
|V (G)| logZmatch

G (λ) over d-regular graphs.

The answer may very well depend on λ and the parity of d.

• Is it true that for d even and all λ, Kd+1 is the minimizer?
• Is it true that for all d and all λ ≤ 1, Kd+1 is the minimizer?

4.5. Independent sets in bipartite vertex-transitive graphs. Next, we see that the
same methods can be used to prove lower bounds on the occupancy fraction in bipartite
graphs, using very different kinds of constraints.
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Now let αTd(λ) be the solution to the equation

α

λ(1− α)
=

(
1− 2α

1− α

)d
We interpret αTd(λ) as the occupancy fraction of the unique translation invariant hard-core
measure on the infinite d-regular tree Td at fugacity λ

Theorem 15 (Davies, Jenssen, P., Roberts [20]). Let G be a bipartite, vertex-transitive,
d-regular graph. Then

αG(λ) > αTd(λ) .

To prove Theorem 15 we need a correlation inequality.

Lemma 16. Let G be a bipartite graph on bipartition L ∪R. Suppose v1, . . . vk ∈ L. Then

Pr
G,λ

[
k∧
i=1

vi ∈ I

]
≥

k∏
i=1

Pr
G,λ

[vi ∈ I]

There are several different proofs of this lemma; Van den Berg and Steif [53] show that it
is a consequence of the FKG inequality.

Proof of Theorem 15. Fix a vertex v ∈ V (G) and let Y be the number of its uncovered
neighbors when drawing I according to the hard-core model on G. For each neighbor u1 . . . ud
of v, let Yui be the indicator random variable that ui is uncovered.

αG(λ) = Pr
G,λ

[v ∈ I] =
λ

1 + λ
E[(1 + λ)−Y] since G is triangle-free

=
λ

1 + λ
E[(1 + λ)−

∑d
i=1 Yui ]

=
λ

1 + λ

(
αG(λ) + (1− αG(λ))E[(1 + λ)−

∑d
i=1 Yui |v /∈ I]

)
,

and rearranging gives

αG(λ)

λ(1− αG(λ))
= E[(1 + λ)−

∑d
i=1 Yui |v /∈ I] .

Now on the event {v /∈ I}, by vertex-transitivity the random variables Yu1 , . . .Yud each have

a Bernoulli(p) distribution, where p = 1+λ
λ

αG(λ)
1−αG(λ) . Moreover, Lemma 16 applied to G \ v,

shows that these random variables are positively correlated (conditioned on {v /∈ I}). This
gives

αG(λ)

λ(1− αG(λ))
= E[(1 + λ)−

∑d
i=1 Yui |v /∈ I] >

d∏
i=1

E[(1 + λ)−Yui |v /∈ I]

=

(
1− p+

p

1 + λ

)d
=

(
1− 2αG(λ)

1− αG(λ)

)d
.

The function α
λ(1−α) is increasing in α, the function

(
1−2α
1−α

)d
is decreasing in α, and the two

functions are equal at α = αTd(λ), so we can conclude that αG(λ) > αTd(λ). �
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The lower bound in Theorem 15 is in fact asymptotically tight when λ ≤ λc(Td) = (d−1)d−1

(d−2)d

(the uniqueness threshold of the hard-core model on Td): there is a sequence of graphs Gn
on n vertices that achieve the lower bound in the limit as n→∞.

Exercises.

(1) Prove that for any graph G on at most d vertices,

EG,λ
[
|I|
∣∣|I| ≥ 1

]
≤ λd(1 + λ)d−1

(1 + λ)d − 1
.

(2) Suppose G is a d-regular graph and suppose v ∈ V (G) does not belong to a Kd,d com-
ponent. Give a lower bound (in terms of d, λ) on the probability that the uncovered
neighborhood of v is not the empty graph or the graph of d isolated vertices. (This
proves uniqueness in the independent set theorem in a quantitative way).

(3) Suppose a vertex v of a graph G has d neighbors (but we make no assumption on the
presence or absence of edges in its neighborhood). Do the hard-core model on G at
fugacity λ, and let pk = Pr[|I ∩N(v)| = k]. Give a lower bound on pk−1 in terms of
pk, d, and λ. Is the bound tight in any graph?

(4) Use the tight bound from the previous question, for k = 2, . . . d, to prove that αG(λ) ≤
αKd,d(λ) for any d-regular G.

(5) Prove that αG(λ) ≥ αKd+1
(λ) for any d-regular G.

5. Lower bounds, Ramsey theory, and sphere packings

5.1. Ramsey theory: R(3, k).

Definition 17. The Ramsey number R(t, k) is the fewest number of vertices a graph must
have to guarantee the existence of either a clique of size t or an independent set of size k.

We could equivalently define the Ramsey numbers in terms of edge colorings of the complete
graph: R(t, k) is the smallest N so that any red/blue coloring of the edges of KN contains
either a monochromatic red or monochromatic blue clique.

Particularly important are the diagonal Ramsey numbers R(k, k). Understanding the
asymptotics of R(k, k) as k →∞ is a central problem in extremal combinatorics.

Beyond the diagonal Ramsey numbers, the next most studied is R(3, k): the minimum
number of vertices that guarantee the existence of either a triangle or an independent set
of size k. The major question here is to understand the asymptotics of R(3, k) as k → ∞.
For an enjoyable history of the problem see Spencer’s survey [51]. The asymptotic order
R(3, k) = Θ(k2/ log k) was determined in two seminal papers, the upper bound by Ajtai,
Komlós, and Szemerédi [1] and the lower bound by Kim [36]. The constant in the upper
bound was improved by Shearer [48] to

(6) R(3, k) ≤ (1 + ok(1))
k2

log k
.

Bohman and Keevash [5] and independently Fiz Pontiveros, Griffiths, and Morris [24] im-
proved the constant in the lower bound to

R(3, k) ≤
(

1

4
+ ok(1)

)
k2

log k
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by analyzing the triangle-free process: begin with an empty graph G0 on n vertices. To form
Gi+1 from Gi, add an edge (u, v) uniformly at random from the set of all potential edges that
are not in E(Gi) and would not create a triangle in Gi+1; if there is no such edge to choose
from, terminate the process.

Shearer’s upper bound comes from the following theorem giving a lower bound on the
independence number of triangle-free graphs.

Theorem 18 (Shearer [48]). For every triangle-free graph G of average degree at most d,

α(G) ≥ (1 + od(1))
log d

d
· |V (G)| .

Shearer’s proof proceeds by analyzing a certain randomized greedy algorithm that con-
structs an independent set of the required size.

The bound (6) on R(3, k) follows from Theorem 18 by the following observation. We must

show that any triangle-free graph G on at least (1 + ε) k2

log k vertices has an independent set

of size k. First suppose that the maximum degree of G is at least k. Then because G is
triangle-free we can take the neighborhood of a yertex of degree at least k to obtain the
desired independent set. Now suppose that all vertices have degree at most k (or at most
k − 1 if you prefer). Then Shearer’s result states that

α(G) ≥ (1 + ok(1))
log k

k
· |V (G)|

≥ (1 + ε)(1 + ok(1))
log k

k

k2

log k

≥ k

for arbitrary ε > 0 and large enough k, and therefor R(3, k) ≤ (1 + ok(1)) k2

log k .

Here we will apply the method of Section 4 to provide an alternative proof of this bound.
We then give a conjecture suggested by the method; a proof of this conjecture would lead to
a factor 2 improvement in the bound.

Theorem 19 (Davies, Jenssen, Perkins, Roberts [22]). For λ ≥ 1, and any triangle-free
graph G of maximum degree d,

αG(λ) ≥ (1 + od(1))
log d

d
.

Compared to Theorem 18, Theorem 19 has a stronger condition: max degree d instead of
average degree d; but the conclusion is also stronger: instead of guaranteeing the existence
of an independent set of size (1 + od(1)) log d

d · n, Theorem 19 says that the average size over
all independent sets is at least this large. Below we will explore whether or not this should
imply the existence of a significantly larger independent set.

Proof. Choose I from the hard-core model on G at fugacity λ and independent choose v
uniformly at random from V (G). Let Y = Y(I,v) be the number of uncovered neighbors of
v with respect to I; that is the number of neighbors of v with no neighbors in I.

Then as in Section 4, since G is triangle-free we have

αG(λ) =
λ

1 + λ
E(1 + λ)−Y ≥ λ

1 + λ
(1 + λ)−EY ,(7)
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Figure 6. λ
1+λy

∗ as a function of λ with d = 100.

where the inequality is an application of Jensen’s inequality. Since G has maximum degree d
we have

αG(λ) =
1

|V (G)|
∑

v∈V (G)

Pr
G,λ

[v ∈ I]

≥ 1

|V (G)|
∑

v∈V (G)

1

d

∑
u∼v

Pr
G,λ

[u ∈ I]

=
1

d

λ

1 + λ
EY .(8)

Combining (7) and (8), we get

αG(λ) ≥ λ

1 + λ
max

{
(1 + λ)−EY,

1

d
EY

}
≥ λ

1 + λ
min
y≥0

max
{

(1 + λ)−y,
y

d

}
.

Now since (1 + λ)−y is a decreasing function and y
d is an increasing function, we have

αG(λ) ≥ λ

1 + λ

y∗

d

where y∗ is the solution to the equation

(1 + λ)−y =
y

d
or,

y · ey log(1+λ) = d .

The solution is

y∗ =
W (d log(1 + λ))

log(1 + λ)

where W (·) is the W-Lambert function. This gives

αG(λ) ≥ 1

d

λ

1 + λ

W (d log(1 + λ))

log(1 + λ)
.(9)
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Now although αG(λ) is monotone increasing in λ, somewhat surprisingly the bound (9) is
not monotone in λ (see Figure 6 for example).

It turns out that it is best to take λ = λ(d) → 0 as d → ∞, but not as quickly as any
polynomial, that is λ(d) = ω(d−ε) for every ε > 0.

We set λ = 1/ log d and derive a bound asymptotically in d. We show in the exercises that
the Lambert function satisfies

W (x) = log(x)− log log(x) + o(1)

as x → ∞. If λ → 0 then λ
(1+λ) log(1+λ) → 1, and W (d log(1 + λ)) = (1 + od(1)) log d. This

gives, for λ = 1/ log d,

αG(λ) ≥ (1 + od(1))
log d

d
,

and by monotonicity this extends to all larger λ. �

5.1.1. Tightness. It is not known that Shearer’s Theorem 18 is tight: the best we know is
that a random d-regular graph has independence number (2 +od(1)) log d

d n whp. Theorem 19,
however, is asymptotically tight in d. The random d-regular graph has average independent
set size (1 + od(1)) log d

d n whp at λ = 1. In fact Theorem 19 is tight over a wider range
of λ, all λ = Od(1). If we set λ = dc for c ranging from −1 to 1, then the random d-

regular graph has occupancy fraction (1 + c) log d
d + o(1) whp as n→∞. On the other hand,

our lower bound states that for all triangle-free G of max degree d, and all c ∈ (−1, 0],

αG(λ) ≥ (1 + c+ od(1)) log d
d . A natural question is whether the lower bound can be extended

to c ∈ (0, 1].

5.1.2. On the number of independent sets in triangle-free graphs.

Theorem 20. For any triangle-free graph G on n vertices with maximum degree at most d,

i(G) ≥ e(
1
2

+od(1)) log2 d
d

n.

Proof. We integrate the bound (9) for λ = 0 to 1 to obtain a lower bound on the partition
function.

1

n
log i(G) =

1

n
logZG(1) =

∫ 1

0

αG(t)

t
dt

≥
∫ 1

0

1

d

1

1 + t

W (d log(1 + t))

log(1 + t)
dt from (9)

=
1

d

∫ W (d log 2)

0
1 + u du using the substitution u = W (d log(1 + t))

=
1

d

[
W (d log 2) +

1

2
W (d log 2)2

]
=

(
1

2
+ od(1)

)
log2 d

d
.

�
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Theorem 20 is tight asymptotically in d, using the random d-regular graph as an example
again.

Using a similar argument to the proof of the R(3, k) upper bound, we can use Theorem 20
to give a lower bound on the number of independent sets in a triangle-free graph without
degree restrictions.

Corollary 21. For any triangle-free graph G on n vertices,

i(G) ≥ e
(√

2 log 2
4

+o(1)
)√

n logn
.

Proof. Suppose the maximum degree of G is equal to d. Then i(G) ≥ 2d since we can
simply take all subsets of the neighborhood of the vertex with largest degree, and i(G) ≥
e(

1
2

+od(1)) log2 d
d

n from Theorem 20. As the first lower bound is increasing in d and the second
is decreasing in d, we have

i(G) ≥ min
d

max

{
2d, e(

1
2

+od(1)) log2 d
d

n

}
= 2d

∗

where d∗ is the solution to 2d = e(
1
2

+od(1)) log2 d
d

n, that is,

d∗ = (1 + od(1))

√
2
√
n log n

4
√

log 2
,

and so

i(G) ≥ e
(√

2 log 2
4

+o(1)
)√

n logn
.

�

5.1.3. Max vs. average independent set size? Theorem 19 implies the bound (6) in exactly
the same way as Shearer’s bound, as the occupancy fraction is of course a lower bound on the
independence ratio. But we might hope that it gives more – that in triangle-free graphs there
is a significant gap between the independence number and the size of a uniformly random
independent set (i.e. at λ = 1 in the hard-core model).

Open Problem. Use Theorem 19 to improve the current asymptotic upper bound on
R(3, k).

We give three specific conjectures whose resolution would improve the bound.

Conjecture 22 ([22]). For any triangle-free graph G, we have

α(G)

|V (G)| · αG(1)
≥ 4/3 .

Conjecture 23 ([22]). For any triangle-free graph G of minimum degree d, we have

α(G)

|V (G)| · αG(1)
≥ 2− od(1) .

Conjecture 24 ([22]). For any ε > 0, there is λ small enough so that for any triangle-free
graph G we have

α(G)

|V (G)| · αG(λ)
≥ 2− ε .
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Conjecture 22 would imply a factor 4/3 improvement on the current upper bound for
R(3, k), while Conjectures 23 and 24 would both imply a factor 2 improvement.

Open Problem. Shearer [49] proved that any Kr-free graph G of average degree d on n
vertices has independence number

α(G) ≥ (C(r) + od(1))
log d

d · log log d
· n ,

for some constant C(r) > 0. It is not known whether the log log d in the denominator is
necessary or not.

5.2. Sphere packing densities. In this section we return to hard spheres and suggest an
analogy between Ramsey numbers and sphere packing densities. We then make the analogy
partially rigorous by using the occupancy method in continuous space to prove a lower bound
on the asymptotics of the maximum sphere packing density as the dimension tends to infinity.

5.2.1. Sphere packing densities in Euclidean space. Let Br(x) be the ball of radius r around
x ∈ Rd.

Definition 25. The maximum sphere packing density of d-dimensional Euclidean space, θ(d),
is

θ(d) = sup
P

lim sup
R→∞

vol(P ∩BR(0))

vol(BR(0))
,

where the supremum is over all sphere packings P of equal-sized spheres.

Of course θ(1) = 1. θ(2) = π/
√

12 = .9068 . . . with the packing given by the hexagonal
lattice and this was proved by Thue in 1894. θ(3) = π/

√
18 = .7404 . . . with the packing

given by stacking hexagonal packings (exactly how you might try to stack oranges); this was
Kepler’s Conjecture and it was only proved in 2005 by Thomas Hales [30].

In breakthrough 2016 paper Maryna Viazovska proved that θ(8) is achieved by the E8

lattice [56], and along with collaborators quickly proved that θ(24) is given by the Leech
lattice [15]. All other dimensions are currently unknown.

What about optimal sphere packings in very high dimensions? Almost nothing is known!
We do not know if the optimal packings are lattice packings or disordered. And our upper
and lower bounds on θ(d) as d→∞ are very far apart.

A lower bound of θ(d) ≥ 2−d is trivial.

Proposition 26. In all dimensions θ(d) ≥ 2−d.

Proof. Take any saturated (maximal) sphere packing, and double all the radii; because the
original packing was saturated, the doubled balls must cover space (or else there would have
been space for another center). Since the fraction of space covered increases by at most a
factor 2d, the original packing must have covered at least a 2−d fraction of space. �

Compare Proposition 26 (and its proof) to the following bound on the independence num-
ber of a graph. (We use D here to distinguish vertex degree from dimension of Euclidean
space).

Proposition 27. For all graphs G of maximum degree D, α(G) ≥ |V (G)|/(D + 1).
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Proof. Take any maximal independent set I of G. Let B(I) be the set of vertices in I and
their neighbors. Because I was maximal, we must have B(I) = V (G). And because G has
maximum degree D, |B(I)| ≤ (D + 1)|I|, and so |I| ≥ |V (G)|/(D + 1). �

This suggests an analogy between independent sets and sphere packings with the maximum
degree D of a graph equivalent in some sense to the size of the excluded neighborhood of a
center of a sphere packing (2d times the volume of a sphere). Of course the centers of a sphere
packing are in fact an independent set in the infinite graph with vertex set Rd in which two
vertices are joined if their distance is at most 2rd.

The 2−d bound has been improved by a factor of d by Rogers [46], with subsequent con-
stant factor improvements by Rogers and Davenport [19], Ball [3], Vance [54], and finally
Venkatesh [55] who proved that θ(d) ≥ (65963 + od(1))d · 2−d. Venkatesh also gains an
additional log log d factor in a sparse sequence of dimensions.

An upper bound of 2−(.599···+od(1))·d was proved by Kabatiansky and Levenshtein [34]; there
is a recent constant factor improvement by Cohn and Zhao [16].

The lower bounds mentioned above in fact show the existence of a lattice packing of the
given density. This is clearly a stronger result that the existence of some packing, but it is not
clear that by considering lattice packings only we will be able to close the gap in the bounds.
There is a proof of θ(d) ≥ .01 · d2−d by Krivelevich, Litsyn, and Vardy [37] using graph
theory and the above mentioned result of Ajtai, Komlós, and Szemerédi [1], strengthening
this analogy between Ramsey theory and sphere packing.

Open Problem. Improve the exponential order of the upper or lower bound on θ(d).

5.2.2. A lower bound on the occupation density of the hard sphere model. Recall the hard
sphere model on a bounded, measurable set S ⊂ Rd. It is a random set X of centers in S at
pairwise distance at least 2rd. Its partition function is

ZS(λ) =
∞∑
k=0

λk

k!

∫
Sk

1D(x1,...,xk) dx1 · · · dxk .

The analogue of the occupancy fraction is the expected number of centers per unit of
volume.

Definition 28. The occupation density of the hard sphere model on S at fugacity λ is

αS(λ) =
1

vol(S)
ES,λ|X| .

Theorem 29 (Joos, Jenssen, P. [33]). Let Bn be the ball of volume n in Rd. Then for

λ ≥ 3−d/2,

αBn(λ) ≥ (1 + od(1))
log(2/

√
3) · d

2d
.

The corresponding bound θ(d) ≥ (1 + od(1)) log(2/
√

3)·d
2d

follows:

Lemma 30. Let Bn be the ball of volume n in Rd. Then for any λ > 0,

θ(d) ≥ lim sup
n→∞

αBn(λ) .
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The proof of this lemma uses the fact that volume grows subexponentially fast in Rd.

5.2.3. Proof of Theorem 29. Given a set of centers X in S, we can partition S into three
sets: points that are covered, blocked, and free. A point x ∈ S is covered if d(x,X) ≤ rd; it
is blocked if d(x,X) ∈ (rd, 2rd] and free if d(x,X) > 2rd.

Definition 31. The expected free volume of the hard sphere model on S is

FVS(λ) =
1

vol(S)

∫
S

Pr
S,λ

[d(x,X) > 2rd] dx .

That is, FVS(λ) is the expected fraction of points in S that could be added to X and still
result in a packing.

Lemma 32.
αS(λ) = λ · FVS(λ) .

Proof. �

Now consider the following two-part experiment. Pick X from the hard sphere model on
S and choose v ∈ S uniformly at random. Let TS be the externally uncovered volume in the
2rd neighborhood of v; that is,

TS = {x ∈ B2rd(v) : d(x, y) > 2rd ∀ y ∈ X ∩B2rd(v)c} .
Note that only centers outside of the 2rd ball around v affect the set TS .

Lemma 33. Let S be bounded and measurable, and consider the above two-part experiment.
Then

(1) αS(λ) = λES,λ
[

1
ZTS

(λ)

]
.

(2) αS(λ) ≥ 2−dλES,λ
[
λZ′TS

(λ)

ZTS
(λ)

]
.

Proof. �

Lemma 34. Let S be bounded and measurable.

(1) logZS(λ) ≤ λ · vol(S).

(2) αS(λ) ≥ λ · e−λES,λvol(TS).

Finally we need a simple geometric inequality about spheres in Rd.

Lemma 35. Let S ⊆ B2rd(0) be measurable. Then

E[vol(B2rd(u) ∩ S)] ≤ 2 · 3d/2 ,
where u is chosen uniformly from S.

Proof. �

Proof of Theorem 29. Let Bn = Bn1/drd
(0). Let αn = αBn(λ).

We have

αn = λ · EBn,λ
[

1

ZTBn
(λ)

]
≥ λ · e−λEBn,λ logZTBn

(λ)
.
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On the other hand,

αn ≥ 2−dEBn,λ

[
λZ ′TBn

(λ)

ZTBn
(λ)

]
= 2−dEBn,λ[vol(TBn) · αTBn

(λ)]

≥ 2−dEBn,λ
[
λ · vol(TBn) · e−λETBn

vol(U)
]

by Lemma 34 part 2

≥ 2−dEBn,λ
[
logZTBn

(λ) · e−λETBn
vol(U)

]
by Lemma 34 part 1

≥ 2−dEBn,λ
[
logZTBn

(λ) · e−λ2·3d/2
]

by Lemma 35

= 2−d · e−λ2·3d/2EBn,λ logZTBn
(λ) .

Now with z = EBn,λ logZTBn
(λ), we have

αn ≥ inf
z≥0

max{λe−z, z · 2−de−λ2·3d/2} .

As before, one expression is decreasing in z and the other increasing and so the infimum is
achieved at

z∗ = W

(
λ ·
(

2e−λ2·3d/2
)d)

.

Now take λ = d−23d/2. Then

z∗ = W (λ2de2/d)

= log λ+ d log 2− log d− log log(2/
√

3) + od(1) .

This gives

αn ≥ (1 + od(1))
log(2/

√
3) · d

2d
.

�

Further reading. Henry Cohn has lecture notes on sphere packings [14].

Exercises.

(1) Show that R(3, 3) = 6.
(2) Compute the asymptotics of W (x) as x→∞ to the first two terms.

(3) Find a triangle-free graph G for which α(G)
αG(1) < 3/2.

6. Generalizations and extensions

6.1. Adding local constraints.
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6.1.1. The Petersen graph. The Petersen graph, P5,2, has 10 vertices, is 3-regular and vertex-
transitive, has girth 5 and is a (3, 5)-Moore graph (see Figure 1). Its independence polynomial
is

ZP5,2(λ) = 1 + 10λ+ 30λ2 + 30λ3 + 5λ4,

and its occupancy fraction is

αP5,2(λ) =
λ
(
1 + 6λ+ 9λ2 + 2λ3

)
ZP5,2(λ)

.

Our first result provides a tight lower bound on the occupancy fraction of triangle-free
cubic graphs for every λ ∈ (0, 1]:

Theorem 36 (Perarnau, P. [41]). For any triangle-free, cubic graph G, and for every λ ∈
(0, 1],

αG(λ) ≥ αP5,2(λ),

with equality if and only if G is a union of copies of P5,2.

By integrating αG(λ)
λ from λ = 0 to 1 we obtain the corresponding counting result:

Corollary 37. For any triangle-free, cubic graph G, and any λ ∈ (0, 1],

1

|V (G)|
logZG(λ) ≥ 1

10
logZP5,2(λ),

and in particular,
1

|V (G)|
log i(G) ≥ 1

10
log i(P5,2),

with equality if and only if G is a union of copies of P5,2.

6.1.2. The Heawood graph. The Heawood graph, H3,6, has 14 vertices, is 3-regular and vertex-
transitive, has girth 6, and is a (3, 6)-Moore graph (see Figure 1). It can be constructed as
the point-line incidence graph of the Fano plane. Its independence polynomial is

ZH3,6(λ) = 1 + 14λ+ 70λ2 + 154λ3 + 147λ4 + 56λ5 + 14λ6 + 2λ7,

and its occupancy fraction is

αH3,6(λ) =
λ(1 + 10λ+ 33λ2 + 42λ3 + 20λ4 + 6λ5 + λ6)

ZH3,6(λ)
.

Our second result provides a tight upper bound on the occupancy fraction of cubic graphs
with girth at least 5:

Theorem 38 (Perarnau, P. [41]). For any cubic graph G of girth at least 5, and for every
λ > 0,

αG(λ) ≤ αH3,6(λ),

with equality if and only if G is a union of copies of H3,6.

And by integrating αG(t)
t from t = 0 to λ we obtain the corresponding counting results.
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Corollary 39. For any cubic graph G of girth at least 5, and for every λ > 0,

1

|V (G)|
logZG(λ) ≤ 1

14
logZH3,6(λ),

and in particular,
1

|V (G)|
log i(G) ≤ 1

14
log i(H3,6),

with equality if and only if G is a union of copies of H3,6.

Note that Theorem 38 applies to all positive λ, while Theorem 36 requires λ ∈ (0, 1]. Some
bound on the interval for which P5,2 minimizes the occupancy fraction is necessary: for large
λ, P7,2 has a smaller occupancy fraction, and in fact in the limit as λ → ∞, it is minimal:
Staton [52] proved the independence ratio of any triangle-free cubic graph is at least 5/14
and this is achieved by P7,2.

Open Problem. Can Corollaries 37 or 39 be proved with the entropy method?

6.2. Colorings. Let Nq(G) be the number of proper q-colorings of a graph G.

Conjecture 40 (Galvin, Tetali [29]). For any d-regular G and any q ≥ 2,

1

|V (G)|
logNq(G) ≤ 1

2d
logNq(Kd,d).

Galvin and Tetali proved the conjecture under the condition that G is bipartite. The cases
d = 2 or q = 2 are easy exercises.

The next result resolves the conjecture for the case d = 3.

Theorem 41 (Davies, Jenssen, Perkins, Roberts [23]). For any 3-regular G and any q ≥ 2,

1

|V (G)|
logNq(G) ≤ 1

6
logNq(K3,3).

To prove Theorem 41, we proceed indirectly, via the Potts model.

6.2.1. Optimizing the internal energy of the Potts model. Recall the Potts model from Sec-
tion 2.4, a random q-coloring of the vertices of G chosen according to

Pr
G,β

[χ = χ] =
e−βm(G,χ)

ZqG(β)
.

Let U qG(β) be the internal energy (per edge) of the Potts model, or the expected fraction of
monochromatic edges of G under the random coloring:

U qG(β) =
1

|E(G)|
EG,β[m(G,χ)] .

Up to scaling, the internal energy is (minus) the derivative of the free energy:

U qG(β) = −|V (G)|
|E(G)|

(
1

|V (G)|
logZqG(β)

)′
.(10)

Below we will show that for cubic graphs, K3,3 minimizes the internal energy of the anti-
ferromagnetic Potts model.
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Figure 7. Local view for the Potts model program

Theorem 42 ([23]). For any 3-regular G, any q ≥ 2, and any β > 0,

U qG(β) ≥ U qK3,3
(β) .

By integrating this bound from 0 to β we immediately obtain the corresponding bound on
the free energy (the direction of the inequality flips because of the minus sign in (10)):

1

|V (G)|
logZqG(β) ≤ 1

6
logZqK3,3

(β) ,

then sending β →∞ gives Theorem 41.

To prove Theorem 42 we first define a local view of the two-part experiment of drawing χ
from the Potts model on a d-regular graph and choose v uniformly from V (G). We record
the graph structure at depth 1, that is the neighbors of v and any incident edges, and for
each neighbor of v we record the multiset of colors it sees externally under χ (that is, the
colors assigned to its neighbors outside of v ∪N(v)). See Figure 7 for a depiction of a local
view.

Now we can add a family of consistency constraints. Let Sq,d be the set of all q-partitions
of size d; that is, non-negative integer vectors that sum to at most d. To take advantage
of symmetries, we regard these vectors as unordered. A q-coloring χ of d vertices induces a
q-partition; for instance if q = 4, d = 6, and χ assigns colors {3, 3, 2, 4, 1, 2} to the d vertices,
then the q-partition S(χ) = {2, 2, 1, 1} ∈ S4,6. Our constraints will insist that for every
S ∈ Sq,d, the probability that the q-partition induced by χ on the neighbors of v is S equals
the average probability of the same for a neighbor of v.

Both of these probabilities can be computed as expectations over the random local view.
For a local view C and a q-partition S ∈ Sq,d we define

γv,SC :=
1

ZC

∑
χ∈[q]VC

1{H(χ(N(v)))=S} · e−βm(χ) ,

γN,SC :=
1

d

1

ZC

∑
χ∈[q]VC

∑
u∈N(v)

1{H(χ(N(u)))=S} · e−βm(χ) .

Observe that for any graph and any q-partition S, we must have

EC [γv,SC ] = EC [γN,SC ] .
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Our minimization program becomes

Minimize
∑
C

pCU
v
C subject to(11)

pC ≥ 0 ∀C ,∑
C

pC = 1 ,∑
C

pC(γv,SC − γN,SC ) = 0 for all S ∈ Sq,d.

Open Problem. Prove that the optimal solution to the linear program (11) is given by the
distribution induced by Kd,d for all q ≥ d+1 and all β > 0. This would prove Conjecture 40
for q ≥ d+ 1.

We have found some examples with q ≤ d and β large enough for which the optimal
solution to the linear program above is not the distribution induced by Kd,d so we do not
expect the program to be tight in those cases. Another open problem is to find additional
constraints that show Kd,d is optimal for q ≤ d.

Exercises.

(1) Compute ZqKd,d(β).

(2) Come up with an alternative approach to proving Conjecture 40 by looking a random
partial colorings (no monochromatic edges allowed, but some vertices can be left
uncolored) instead of the Potts model.

7. Further directions and open problems

7.1. Independent sets and matchings of a given size. Instead of asking for maximality
of a graph polynomial, like ZG(λ) or ZG, we could ask for the stronger statement that a given
graph maximizes each of the individual coefficients; that is, independent sets or matchings of
a given size.

Conjecture 43 (Kahn [35]). Let 2d divide n. Then for any d-regular G on n vertices, and
any 1 ≤ k ≤ n/2,

ik(G) ≤ ik(Hd,n).

Conjecture 44 (Friedland, Krop, Markstrom [?]). Let 2d divide n. Then for any d-regular
G on n vertices, and any 1 ≤ k ≤ n/2,

mk(G) ≤ mk(Hd,n).

The case k = n/2 concerns perfect matchings and is a special case of Bregman’s theorem.
The best current progress on these conjectures are the following approximate results from [21]:

Theorem 45. For every ε > 0, d > 0, there exists n0 large enough so that the following
is true for all n ≥ n0. Let 2d divide n. Then for any d-regular G on n vertices, and any
εn ≤ k ≤ n/2,

ik(G) ≤ ik(Hd,n),

mk(G) ≤ mk(Hd,n).
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Here we give a short proof of a weaker approximate result that follows directly from the
partition function result. We give the proof for matchings but the same proof works for
independent sets as well.

Proposition. Let 2d divide n. Then for any d-regular G on n vertices, and any 1 ≤ k ≤ n/2,

mk(G) ≤ n ·mk(Hd,n).

Proof. Choose λ so that EHd,n,λ|M| = k. Now since the size of the random matching drawn
from Hd,n is a log-concave probability distribution (this is true for the size of a matching
drawn from any graph; it is also true for the size of an independent set drawn from Hd,n),
we have that the mean is also the mode of the distribution, and so PHd,n,λ[|M| = k] ≥ 1/n.
This gives

λkmk(Hd,n) ≥ 1

n
Zmatch
Hd,n

(λ)

≥ 1

n
Zmatch
G (λ)

≥ 1

n
λkik(G) .

Dividing through by λk completes the proof. �

7.1.1. Free volume. Going back to the idea of free volume from Section 5.2, we give two
conjectures are stronger than Conjectures 43 and 44 but also have a nice probabilistic inter-
pretation that may help in proving them.

Given a graph G and an integer 1 ≤ k ≤ α(G), let Ik be a uniformly chosen independent
set of G of size exactly k. Let FVG(k) be the expected number of free vertices with respect
to Ik; that is, the expected number of vertices of V that are neither in Ik nor neighboring
some u ∈ Ik.

FVG(k) =
1

ik(G)

∑
I∈I(G):|I|=k

|{u : d(u, I) ≥ 2}|

Since each independent set of size k + 1 contains exactly k + 1 independent sets of size k
and the free vertices with respect to Ik are exactly the vertices that can be added to form an
independent set of size k + 1, we have

FVG(k) =
(k + 1)ik+1(G)

ik(G)
.

We can define the analogous quantity FVmatch
G (k) for matchings.

Theorems 12 and 13 show in fact that when I or M are chosen from the hard-core and
monomer-dimer models respectively, Kd,d maximizes the expected fraction of free vertices
and edges (as the expected fraction of free vertices is simply αG(λ)/λ). We conjecture the
same is true for Ik and Mk.

Conjecture 46. Let 2d divide n. Then for any d-regular G on n vertices, and any 1 ≤ k ≤
n/2,

ik+1(G)

ik(G)
≤
ik+1(Hd,n)

ik(Hd,n)
.
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Conjecture 47. Let 2d divide n. Then for any d-regular G on n vertices, and any 1 ≤ k ≤
n/2,

mk+1(G)

mk(G)
≤
mk+1(Hd,n)

mk(Hd,n)
.

Conjectures 46 and 47 are of course stronger than Conjectures 43 and 44: we obtain the
latter by successively multiplying.

If we ask to minimize the number of independent sets in a regular graph, then the entire
hierarchy of statements is known: the minimizer is a union of Kd+1’s, cliques on d+1 vertices.

Theorem 48 (Cutler, Radcliffe [18]). Let d + 1 divide n. Then for any d-regular G on n
vertices, and any 1 ≤ k ≤ n/(d+ 1),

ik+1(G)

ik(G)
≥
ik+1(CLn,d)

ik(CLn,d)

where CLn,d is the union of n/(d + 1) disjoint cliques on d + 1 vertices. As a consequence,
for any d-regular graph G,

1

|V (G)|
log i(G) ≥ 1

d+ 1
log i(Kd+1) =

log(d+ 2)

d+ 1
.

From the perspective of free volume the proof is a one sentence argument: in a d-regular
graph each vertex in an independent set excludes d others, and in a union of Kd+1’s, there
is no overlap of excluded vertices, and so the expected excluded volume when drawing a
uniformly random independent set of size k − 1 is maximized by CLn,d.

7.2. General results and conjectures on graph homomorphisms.

Exercises.

(1) Let a0, a1, . . . an and b0, b1, . . . bn be two sequences of non-negative integers with a0 =
b0 = 1. Let A(x) =

∑n
k=0 akx

k and B(x) =
∑n

k=0 bkx
k.

(a) Suppose ak
ak−1

≥ bk
bk−1

for all k = 1 . . . n. Show that A′(x)
A(x) ≥

B′(x)
B(x) for all x ≥ 0.

(b) Show that the statements ‘ak ≥ bk for all k = 1 . . . n’ and ‘A
′(x)
A(x) ≥

B′(x)
B(x) for all

x ≥ 0’ are incomparable in general.
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Appendix A. Notation

θ(d): The maximum sphere packing density in Rd.
Td(n): The d-dimensional torus of volume n.
rd: The radius of the ball of volume 1 in Rd.
I(G): The set of all independent sets of a graph G.
M(G): The set of all matchings of a graph G.
i(G): The total number of independent sets of a graph G.
m(G): The total number of matchings of a graph G.
mperf(G): The number of perfect matchings of G.
ik(G): The number of independent sets of size exactly k in G.
mk(G): The number of matchings of size exactly k in G.
ZG(λ): The independence polynomial of a graph G or the partition function of the

hard-core model.
Zmatch
G (λ): The matching polynomial of a graph G or the partition function of the
monomer-dimer model.

ZqG(β): The q-color Potts model partition function on G at inverse temperature β.
EG,λ,PrG,λ, I,M,χ: I is a random independent set drawn from the hard-core model on
G at fugacity λ. Likewise M is a random matching drawn from the monomer-dimer
model and χ a random q-coloring from the Potts model.

Kd,d: The complete d-regular bipartite graph on 2d vertices.
Kd+1: The complete graph on d+ 1 vertices.
Cn: The cycle on n vertices.
α(G): The independence number (size of largest independent set) of G.
ν(G): The matching number (size of largest matching) of G.
αG(λ): The hard-core occupancy fraction of a graph G at fugacity λ; αG(λ) =

1
|V (G)|EG,λ|I|.

αmatch
G (λ): The monomer-dimer occupancy fraction of a graph G at fugacity λ
Nq(G): The number of proper q-colorings of G.

Appendix B. Background material

B.1. Statistical physics and probability.

B.2. Entropy.

Definition. Let X be a random variable taking values in a finite set Ω. Then the entropy
of X is

H(X) = −
∑
ω∈Ω

P(X = ω) logP(X = ω).

It is immediate from the definition that entropy is maximized by the uniform distribution;
that is,

H(X) ≤ log |Ω| ,
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with equality if and only if X is uniformly distributed over Ω.

The conditional entropy of X given Y is

H(X|Y ) =
∑
y

P(Y = y) ·H(X|Y = y)

= −
∑
x,y

Pr[X = x, Y = y] log
Pr[X = x, Y = y]

Pr[Y = y]
.

The chain rule for entropy states

H(X1, . . . Xn) = H(X1) +H(X2|X1) + · · ·+H(Xn|X1, . . . Xn−1) .

Conditioning can only reduce entropy:

H(X|Y ) ≤ H(X),

and so we have the subadditivity property of entropy:

H(X1, . . . Xn) ≤
n∑
i=1

H(Xi) .

B.3. Linear programming. Let us review some basic facts about linear programming. (For
much more on linear programming, see for example Boyd and Vandenberghe’s book [6].

Suppose we have the linear program in standard form with variables x, . . . xn:

maximize

n∑
i=1

cixi

subject to xi ≥ 0 ∀i
n∑
i=1

Aijxi ≤ bj for j = 1, . . .m .

This is the primal LP. The corresponding dual LP has variables Λ1, . . .Λm for each constraint
of the primal and constraints for each variable of the primal:

minimize

m∑
j=1

bjΛj

subject to Λj ≥ 0 ∀j
m∑
j=1

AijΛj ≥ ci for i = 1, . . . n .

Theorem (Strong duality theorem). If the primal and dual linear programs have feasible
solutions, then their objective values coincide.

In particular, if we have a feasible primal solution that we believe is optimal, we can prove
this by finding a feasible dual solution with the same objective value.
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Appendix C. An alternative proof of Theorem 12

Here we prove Theorem 12 with a different local view and linear program. In some sense
this is a ‘level 0’ proof: the local view simply records the number of occupied neighbors of a
random vertex, disregarding even the graph structure among the neighbors. The constraints
in this proof are different in form than most of those given in the examples above.

Let G be a d-regular graph. Consider drawing an independent set I from G according to
the hard-core model with fugacity λ, then choosing a vertex v uniformly at random from
G. Let αv = Pr[v ∈ I], and αN = 1

d

∑
u∼v Pr[u ∈ I]. Let Y be the (random) number of

neighbors of v in the independent set. Let pk = Pr[Y = k].

αv =
λ

1 + λ
p0

αN =
1

d
EY.

This imposes a constraint on the distribution of Y :

λ

1 + λ
p0 =

1

d

d∑
k=0

kpk.

Now consider the event that k neighbors of v are occupied. We can choose any one of these
k vertices and remove it, giving an independent set with k − 1 vertices in the neighborhood
of v, and with weight 1/λ times the weight of the initial independent set. An independent
set with k− 1 vertices in the neighborhood of v can be extended by adding one vertex in the
neighborhood of v in at most d− k + 1 different ways. This gives the family of constraints

pk−1 ≥
k

d− k + 1
· pk
λ

for k = 2, . . . , d.

Now we can optimize subject to these constraints.

maximize
λ

1 + λ
p0

subject to

d∑
k=0

pk = 1

pk ≥ 0 ∀ k,

λ

1 + λ
p0 =

1

d

d∑
k=0

kpk,

pk−1 ≥
k

d− k + 1

pk
λ

for k = 2, . . . , d.

This is a linear program with variables p0, . . . pd and d+ 1 constraints (in addition to the
non-negativity constraints).

We claim that in an optimal solution all of the inequality constraints (not including the

non-negativity constraints) must be tight. Suppose that pj−1 = j
d−j+1

pj
λ for all j < k but
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pk−1 = ε + k
d−k+1

pk
λ for some ε > 0. Then we show how to generate a new feasible solution

p′0, . . . p
′
d with a larger objective value. We let

p′0 = p0 + ∆0

p′j = pj −∆j for j < k

p′k = pk + ∆k

p′j = pj for j > k.

To maintain feasibility we must have

∆0 + ∆k =

k−1∑
j=1

∆j(12)

λ

1 + λ
∆0 =

k

d
∆k −

k−1∑
j=1

j

d
∆j .(13)

As long as ∆0 > 0 then the objective function will increase. We will choose the ∆j ’s in such
a way that the inequality constraints for j < k remain tight. That is,

∆j−1 =
j

d− j + 1

∆j

λ
,

or

∆j =
λ(d− j + 1)

j
∆j−1

for 2 ≤ j ≤ k − 1. In particular,

∆j =
λj−1

d

(
d

j

)
∆1,

and so

A :=
k−1∑
j=1

∆j =
∆1

λd

k−1∑
j=1

(
d

j

)
λj

and

B :=
k−1∑
j=1

j

d
∆j =

∆1

λd2

k−1∑
j=1

j

(
d

j

)
λj .

Solving the feasibility constraints (12) and (13) gives

∆0 =
1 + λ

k(1 + λ) + dλ
(Ak −Bd),

so by choosing ∆1 small enough as a function of ε so that the constraint p′k−1 ≥
k

d−k+1
p′k
λ is

not violated, it is enough to show that Ak > Bd, or in other words,

k

k−1∑
j=1

(
d

j

)
λj >

k−1∑
j=1

j

(
d

j

)
λj

which is clear.

Therefor we must satisfy the d− 1 inequality constraints with equality. There are several
ways to complete the proof from here. One simple way is to observe that in Kd,d the inequality



44 WILL PERKINS

constraints hold with equality, and the constraint matrix is full rank, and so the distribution
induced by Kd,d must be the unique optimal solution.

Alternatively, we can compute directly

pk =
λk−1

d

(
d

k

)
p1

for k = 2, . . . d, and so

p0 +
p1

λd

d∑
k=1

λk
(
d

k

)
= 1

and

λ

1 + λ
p0 =

p1

λd2

d∑
k=1

kλk
(
d

k

)
.

Solving these two equations gives p0 = (1+λ)d

2(1+λ)d−1
, and therefor

αOPT ≤
λ(1 + λ)d−1

2(1 + λ)d − 1
,

which proves Theorem 12 since αG(λ) ≤ αOPT for any d-regular G.


