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Hard-core lattice particle (HCLP) systems
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Non-sliding HCLPs

• There exist a finite number τ of tilings {L1, · · · ,Lτ} which are periodic
and isometric to each other.
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Non-sliding HCLPs

• Defects are localized: for every connected particle configuration X that
is not the subset of a close packing and every Y ⊃ X, there is empty space
in Y neighboring X.
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Example of a sliding HCLP

• 2× 2 squares:
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Gibbs measure

• Gibbs measure:

〈A〉ν := lim
Λ→Λ∞

1

ΞΛ,ν(z)

∑
X⊂Λ

A(X)z|X|Bν(X)
∏

x6=x′∈X
ϕ(x, x′)

I Λ: finite subset of lattice Λ∞.

I z > 0: fugacity.

I ϕ(x, x′): hard-core interaction.

I Bν : boundary condition: favors the ν-th tiling.

• Pressure:

p(z) := lim
Λ→Λ∞

1

|Λ|
log ΞΛ,ν(z).
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Theorem

• p(z) − ρm log z and 〈1x1 · · ·1xn〉ν are analytic functions of 1/z for large
values of z.

• There are τ distinct Gibbs states:

〈1x〉ν =

{
1 +O(z−1) if x ∈ Lν

O(z−1) if not.
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Low-fugacity (Mayer) expansion

• Partition function: ZΛ(n): number of configurations with n particles:

ΞΛ(z) =

∞∑
n=0

znZΛ(n)

• Formally,
1

|Λ|
log ΞΛ(z) =

∞∑
k=1

bk(Λ)zk

where, if ZΛ(ki) denotes the number of configurations with ki particles,
then

bk(Λ) :=
1

|Λ|

k∑
j=1

(−1)j+1

j

∑
k1,···,kj>1
k1+···+kj=k

ZΛ(k1) · · ·ZΛ(kj)
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High-fugacity expansion

• Partition function: ZΛ(n): number of configurations with n particles:

ΞΛ(z) =

Nmax∑
n=0

znZΛ(n)

• Inverse fugacity y ≡ z−1:

ΞΛ(z) = zNmax

Nmax∑
n=0

ynQΛ(n)

with QΛ(n) ≡ ZΛ(Nmax − n).
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High-fugacity expansion

• Formally,

1

|Λ|
log ΞΛ = ρm log z +

∞∑
k=1

ck(Λ)yk

where ρm = Nmax
|Λ| ,

ck(Λ) :=
1

|Λ|

k∑
j=1

(−1)j+1

jτ j

∑
k1,···,kj>1
k1+···+kj=k

QΛ(k1) · · ·QΛ(kj)
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High-fugacity expansion
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High-fugacity expansion

• [Gaunt, Fisher, 1965]: diamonds: ck(Λ)→ ck for k 6 9.

• [Joyce, 1988]: hexagons (integrable, [Baxter, 1980]).

• [Eisenberg, Baram, 2005]: crosses: ck(Λ)→ ck for k 6 6.

• Cannot be done systematically: there exist counter-examples: e.g. hard
2× 2 squares on Z2:

c1(Λ) ∝
√
|Λ|
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Holes interact

• Total volume of holes: ∈ ρ−1
m N.
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Non-sliding condition

• Distinct defects are decorrelated.
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Gaunt-Fisher configurations

• Group together empty space and neighboring particles.
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Defect model

• Map particle system to a model of defects:

ΞΛ,ν(z) = zρm|Λ|
∑

γ⊂Cν(Λ)

 ∏
γ 6=γ′∈γ

Φ(γ, γ′)

∏
γ∈γ

ζ(z)
ν (γ)

I Φ: hard-core repulsion of defects.

I ζ
(z)
ν (γ): activity of defect.

• The activity of a defect is exponentially small: ∃ε� 1

ζ(z)
ν (γ) < ε|γ|

• Low-fugacity expansion for defects.
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Crystallization

• Peierls argument: in order to have a particle at x that is not compatible
with the ν-th perfect packing, it must be part of or surrounded by a defect.

• Note: a naive Peierls argument requires the partition function to be in-
dependent from the boundary condition. This is not necessarily the case
here, and we need elements from Pirogov-Sinai theory.
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Lee-Yang zeros

• Lee-Yang zeros: roots of ΞΛ(z) ⇐⇒ singularities of pΛ(z).

• Whenever the high fugacity expansion has a radius of convergence R̃, there
are no Lee-Yang zeros outside of a disc of radius R̃−1.
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