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Hard-core lattice particle (HCLP) systems
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Non-sliding HCLPs

e There exist a finite number 7 of tilings {£1,---, L;} which are periodic
and isometric to each other.
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Non-sliding HCLPs

e Defects are localized: for every connected particle configuration X that
is not the subset of a close packing and every Y D X, there is empty space
in Y neighboring X.
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Example of a sliding HCLP




Gibbs measure

e Gibbs measure:

— IX |
<A>V‘_A13?w_w Y AX)B, (X)) [T el@a)
XCA z#az'eX
» A: finite subset of lattice Ao

» 2z > 0: fugacity.
» (z,2’): hard-core interaction.
» ‘B,: boundary condition: favors the v-th tiling.

e Pressure:

1
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Theorem

e p(2) — pmlogz and (1, ---1,,), are analytic functions of 1/z for large
values of z.

e There are 7 distinct Gibbs states:
1+0(:Yifzel,
(1z), =
O(z™1) if not.
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Low-fugacity (Mayer) expansion

e Partition function: Z,(n): number of configurations with n particles:

= Z 2" Z(n)
n=0

1
logZx (2 bi(A
JA] Z

where, if Z,(k;) denotes the number of configurations with k; particles,
then

e Formally,

L gk
be(A) := A > > Za(k) - Zaky)
Jj=1 k1,,kj>1
k‘1+~~~+k‘j:k‘
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High-fugacity expansion

e Partition function: Z,(n): number of configurations with n particles:

Nmax

Ea(z) = ) 2"Zx(n)
n=0
e Inverse fugacity y = 2!
Nmax
Ep(z) = Nmax Z y"Qa(n)
n=0

with Qa(n) = ZA(Nmax — 1).
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High-fugacity expansion

e Formally,

oo
—logEx = pmlogz+ Y cr(A)y
k=1

where p, = AT

1)i+1

> Qalky) - Qalky)

k,eekji>1
k1+...+kj:k
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High-fugacity expansion
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High-fugacity expansion

[Gaunt, Fisher, 1965]: diamonds: c;x(A) — ¢ for k < 9.
[Joyce, 1988]: hexagons (integrable, [Baxter, 1980]).
[Eisenberg, Baram, 2005]: crosses: ci(A) — ¢ for k < 6.

Cannot be done systematically: there exist counter-examples: e.g. hard
2 x 2 squares on Z?:

c1(A) o< /JA]
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Holes interact

e Total volume of holes: € p,,'N.
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Gaunt-Fisher configurations

e Group together empty space and neighboring particles.
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Defect model

e Map particle system to a model of defects:

Eap(z) =20 | [T @) ) TT 6

YCC(A) \ &Y' €Y T€Y

» ®: hard-core repulsion of defects.

. (7): activity of defect.

e The activity of a defect is exponentially small: Je < 1
() <

e Low-fugacity expansion for defects.
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Crystallization

e Peierls argument: in order to have a particle at x that is not compatible
with the v-th perfect packing, it must be part of or surrounded by a defect.

e Note: a naive Peierls argument requires the partition function to be in-
dependent from the boundary condition. This is not necessarily the case
here, and we need elements from Pirogov-Sinai theory.
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Lee-Yang zeros

e Lee-Yang zeros: roots of =5 (z) <= singularities of pa(2).

e Whenever the high fugacity expansion has a radius of convergence R, there
are no Lee-Yang zeros outside of a disc of radius R™*.
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