MATH 215: Introduction to Advanced Mathematics

Review sheet for Midterm Test 1

Definitions to know

- (1) Logical connectives: and, or, not, implies
- (2) a divides b
- (3) Summation and product notation: $\sum_{j=1}^{n} f(j)$ and $\prod_{j=1}^{n} f(j)$.
- (4) Conditional definition of a set
- (5) Intervals on the real line, e.g. (a, b), $[a, \infty)$, etc.
- (6) Subset, strict subset: $A \subseteq B, A \subset B$.
- (7) Equality of sets
- (8) Empty set
- (9) Power set $\mathcal{P}(S)$
- (10) Union, intersection, complement of sets
- (11) Difference of sets: A B
- (12) Cartesian product of sets
- (13) Existential and universal quantifiers
- (14) Function, domain, codomain, image
- (15) Sequence f(n)
- (16) Null sequence
- (17) Composition of functions
- (18) Injective
- (19) Surjective
- (20) Bijective
- (21) Inverse function / invertible function
- Techniques to know

(1) Write a clear, correct, and concise proof!

- (2) Truth tables
- (3) Implication arrows
- (4) Direct proof
- (5) Backwards proof
- (6) Proof by cases
- (7) Negate a statement with quantifiers
- (8) Proof by contrapositive
- (9) Proof by contradiction
- (10) Proof by induction
- (11) Depict sets using a Venn diagram

Tips for writing good proofs

- (1) Write in full sentences.
- (2) Make it clear where the proof begins and ends.
- (3) Use words with precision:
 - given
 - suppose
 - if
 - implies
 - then
- (4) Make sure implications (and implication arrows) go the right way
- (5) Make it clear where you use the assumptions of the statement

Practice problems

- (1) Write the negation of the following statements.
 - (a) For all integers n, n^3 is an odd number.

- (b) There exist real numbers x, y, z so that x³ = 2y² z⁴.
 (c) For all even integers n, n³ is odd implies n = 7.
 (2) Prove that ∑_{j=0}ⁿ r^j = 1-xⁿ⁺¹/1-x for all positive integers n and all real x ≠ 0.
 (3) Prove by induction that ∑_{j=1}ⁿ 2^j = 2ⁿ⁺¹ 2 for all positive integers n.
- (4) Let $A = \{n \in \mathbb{Z} | -10 \le n \le 10\}$ and $B = \{n \in \mathbb{Z} | n^2 \ge 10\}$.
 - (a) What is $A \cap B$?
 - (b) What is A B?
 - (c) Is $A \subseteq B$?
 - (d) Prove: $\forall a \in A, \exists b \in B, a+b < 0.$
 - (e) Prove: $\exists a \in A, \forall b \in B, |a| < |b|$.
- (5) Prove of disprove the following:
 - (a) For all integers n, $n^3 + 3$ is divisible by 3.
 - (b) For x, y real numbers, $x^2 > y^2$ implies x > y.
 - (c) For real $x, x^2 \ge 16$ implies $x \ge 4$ or $x \le -2$.
 - (d) $\exists x \in (0, 10), \forall y \in (5, 10), x > y.$
- (6) Let f(n) be the sequence defined by $f(n) = e^{-n}$. Prove that f(n) is a null sequence.
- (7) For each function listed below, determine its image and whether the functions is injective, surjective, or bijective.
 - $f_1 : \mathbb{R} \to \mathbb{R}$ defined by $f_1(x) = x^2 1$.
 - $f_2 : \mathbb{R}^{\geq} \to \mathbb{R}^{\geq}$ defined by $f_2(x) = x^2 + 1$.
 - $f_3: (0,1) \to (0,2)$ defined by $f_3(x) = x + 1$.
 - $f_4: (0,\infty) \to (0,\infty)$ defined by $f_4(x) = 1/x$.
- (8) Prove or disprove: if $f : \mathbb{R} \to \mathbb{R}$ is injective and $g : \mathbb{R} \to \mathbb{R}$ is surjective then $f \circ g$: $\mathbb{R} \to \mathbb{R}$ is bijective.