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What is metastability?

Metastability is a phenomenon where a system, under the influence of a
stochastic dynamics, moves between different regions of its state space on
different time scales.

Fast time scale:
quasi-equilibrium within single
subregion

Slow time scale:
transitions between different
subregions

Monographs:

Olivieri and Vares 2005

Bovier and den Hollander 2015

Elena Pulvirenti Metastability for the dilute CW model 2 / 17



The randomly dilute Curie–Weiss model

The RDCW model is a classical model of a disordered ferromagnet.
Ising spin model with N spins
Configuration space SN = {−1,+1}N
Configuration σ = (σi)i∈[N ] ∈ SN , σi ∈ {−1,+1}
[N ] = {1, 2, . . . , N}, h > 0 constant magnetic field.
Hamiltonian in the randomly dilute Curie–Weiss model (RDCW)

HN (σ) = − 1

Np

∑
1≤i<j≤N

Jijσiσj − h
∑
i∈[N ]

σi

where {Jij}i,j∈[N ] is a sequence of i.i.d. random variables such that Jij = Jji
and E(Jij) = p ∈ (0, 1) constant [e.g. Jij ∼ Ber(p)]

Hamiltonian in the standard Curie–Weiss model (CW)

HCW
N (σ) = − 1

N

∑
1≤i<j≤N

σiσj − h
∑
i∈[N ]

σi = E(HN (σ))
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Graphical representation of configurations

Define the interaction graph G = ([N ], E) : (i, j) /∈ E ⇐⇒ Jij = 0

HN (σ) = − 1

Np

∑
1≤i<j≤N

Jijσiσj − h
∑
i∈[N ]

σi

= − 1

Np

∑
{i,j}∈E

σiσj − h
∑
i∈[N ]

σi
−1

+1

+1

−1

−1

+1

We take Jij ∼ Ber(p), p ∈ (0, 1) =⇒ G is an Erdős–Rényi random graph with
fixed edge probability p

Standard Curie–Weiss model =⇒ G is a complete graph

HCW
N (σ) = − 1

N

∑
1≤i<j≤N

σiσj − h
∑
i∈[N ]

σi

−1

+1

+1

−1

−1

+1
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The Glauber dynamics

At equilibrium we define the Gibbs measure, σ ∈ SN ,

µN,β(σ) =
e−βHN (σ)

ZN,β
with ZN,β =

∑
σ∈SN

e−βHN (σ)

were β ∈ (0,∞) is the inverse temperature and ZN,β the partition function.
Discrete time Glauber dynamics on SN with Metropolis transition probabilities

pN (σ, σ′) =


1
N exp(−β[HN (σ′)−HN (σ)]+) if σ ∼ σ′,
1−

∑
η 6=σ p(σ, η) if σ = σ′,

0 otherwise.

−1

+1

+1

−1

−1

+1

+1

+1

+1

−1

−1

+1

µN,β is the unique invariant and reversible measure.
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Magnetization in the Curie-Weiss model

The fact that this is a mean-field model is expressed by the fact that HN (σ)
depends on σ only through the empirical magnetization

mN (σ) =
1

N

∑
i∈[N ]

σi, SN [m] := m−1N (m).

mN takes values in ΓN =
{
−1,−1 + 2

N , ..., 1−
2
N , 1

}
. Hence

HCW
N (σ) = −N

(
1
2mN (σ)2 + hmN (σ)

)
=: NE(mN (σ)).

Mesoscopic measure on ΓN :

QCW
N,β(m) = µCW

N,β ◦m−1N (m) =
e−βNfN,β(m)

ZCW
N,β

where fN,β is the free energy and IN is the entropy

fN,β(m) = E(m) + β−1IN (m)
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Metastability for the Curie–Weiss model

-1 1

fβ

m− m+m∗

limN→∞ fN,β(m) = fβ(m)

Hitting time of A

τA = inf{t > 0 : σt ∈ A}.

(m−(N),m∗(N),m+(N)) are the closest points in ΓN to (m−,m
∗,m+).

ECW
m−(N) is the expectation w.r.t. the Markov process for the CW model with

Glauber dynamics starting in m−(N).

Theorem (Mean metastable exit time)

For β > 1 and h > 0 small enough, as N →∞,

ECW
m−(N)[τm+(N)] = exp

(
βN [fβ(m∗)− fβ(m−)]

)
× π

1−m∗

√
1−m∗2

1−m2
−

N(1 + o(1))

β

√
f ′′β (m−)

(
−f ′′β (m∗)

)
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Results: main theorem

Last exit-biased distribution

νA,B(σ) =
µN (σ)Pσ(τB < τA)∑
σ∈A µN (σ)Pσ(τB < τA)

, σ ∈ A

Notation: νm−,m+
= νSN [m−(N)],SN [m+(N)]

PJ is the law of the random couplings (or the law of the ER random graph).

Theorem (Metastable exit time for the RDCW model )

For β > 1, h > 0 small enough and for s > 0, there exist absolute constants
k1, k2 > 0 and C1(p, β) < C2(p, β, h) independent of N , such that

lim
N↑∞

PJ

(
C1e−s ≤

Eνm−,m+

[
τSN [m+(N)]

]
ECW
m−(N)

[
τm+(N)

] ≤ C2es

)
≥ 1− k1e−k2s

2

.

[A. Bovier, S. Marello, and E. P., “Metastability for the dilute Curie–Weiss model with
Glauber dynamics”, preprint 2019, arXiv: 1912.10699]
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Background

Equilibrium RDCW model:

Bovier and Gayrard, ’93: prove that the RDCW free energy converges to
that of the CW model (in the thermodynamic limit), when p decreases with
the system size in a certain way.

...

Metastability for interacting particle systems on random graphs:

Dommers, den Hollander, Jovanovski, and Nardi, ’17: random regular graph
and configuration model with Glauber dynamics, in the limit as β →∞ and
the number of vertices is fixed.

den Hollander and Jovanovski, ’19: Erdős–Rényi random graph for fixed
temperature in the thermodynamic limit. It is exactly the RDCW model.
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Results: discussion

Theorem (Metastable exit time for the RDCW model )

For β > 1, h > 0 small enough and for s > 0, there exist absolute constants
k1, k2 > 0 and C1(p, β) < C2(p, β, h) independent of N , such that

lim
N↑∞

PJ

(
C1e−s ≤

Eνm−,m+

[
τSN [m+(N)]

]
ECW
m−(N)

[
τm+(N)

] ≤ C2es

)
≥ 1− k1e−k2s

2

.

Comparison with den Hollander and Jovanovski:
With PJ → 1 as N →∞, uniformly in ξ ∈ SN [m−(N)],

Eξ
[
τSN [m+(N)]

]
= NEN exp

(
βN [fβ(m∗)− fβ(m−)]

)
,

i.e. they prove that the multiplicative error term is at most polynomial in N .
They do not know how to identify the random prefactor. They use pathwise
approach to metastability.
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Mesoscopic measure and closeness to CW

Obtain a mesoscopic description in terms of the magnetization

mN (σ) =
1

N

N∑
i=1

σi for σ ∈ SN

QN,β(m) = µN,β ◦m−1N (m) = µN,β(SN [m]) for m ∈ ΓN

Proposition

For every m ∈ ΓN , asymptotically for N →∞,

ZNQN (m) ≤ eα ZCW
N QCW

N (m) exp (YN,m) (1 + o(1)) ,

where YN,m is a sub-Gaussian random variable, i.e. for any β > 0, any s > 0,

PJ
(
|YN,m| ≥ s

)
≤ c1 exp

(
− 2c2

p2

β2
s2
)
.

Same lower bound with κ instead of α.
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Mesoscopic measure and closeness to CW

Target result

ZNQN (m) ≈ cZCW
N QCW

N (m) exp (YN,m) (1 + o(1))

(≈ means we have upper bound with eα and lower bound with eκ)

ZNQN (m) =
∑

σ∈SN [m]

e−βHN (σ) = e−βNE(m)
∑

σ∈SN [m]

e−β[HN (σ)−HCW
N (σ)]

=: e−βNE(m) · exp (NFN,m)

= e−βNE(m) · exp (E(NFN,m)) exp (N [FN,m − EFN,m])

Recall:
ZCW
N QCW

N (m) = e−βNfN (m) = e−βNE(m) · |SN [m]|
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Mesoscopic measure and closeness to CW

Sub-Gaussian bounds on the stochastic part .

Proposition

N [FN,m − EFN,m] is sub-Gaussian, i.e. for any β, s > 0

PJ
(
|N(FN,m − EFN,m)| ≥ s

)
≤ c1 exp

(
− 2c2

p2

β2
s2
)
.

Proof: use the following result

Theorem (Talagrand’s concentration inequality)

Let G : Rn → R be a 1-Lipschitz and convex function and g = (gi)i∈[n] be
independent r.v., uniformly bounded by K > 0. Then, for any t ≥ 0,

P
(
|G(g)− EG(g)| ≥ tK

)
≤ c1 exp

(
− c2t2

)
.

Apply the theorem to the free energies FN,m as a function of the coupling

constants (Jij − p)ij and use G = p
√
2

β NFN,m.
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Mesoscopic measure and closeness to CW

Asymptotic bounds on the deterministic part .

Proposition

eκ|SN [m]|(1 + o(1)) ≤ exp(E[N FN,m]) ≤ eα|SN [m]|(1 + o(1))

exp(NFN,m) =
∑

σ∈SN [m]

exp

− β

Np

∑
1≤i<j≤N

(Jij − p)σiσj


E[exp(x(Jij − p))] = 1 + xE(Jij − p) +

x2

2
E(Jij − p)2 + o0(x2)

= 1 +
x2

2
p(1− p) + o0(x2)

Upper bound:

E[exp(N FN,m)]

Jensen’s inequality
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Mesoscopic measure and closeness to CW

Asymptotic bounds on the deterministic part .

Proposition

eκ|SN [m]|(1 + o(1)) ≤ exp(E[N FN,m]) ≤ eα|SN [m]|(1 + o(1))

exp(NFN,m) =
∑

σ∈SN [m]

exp

− β

Np

∑
1≤i<j≤N

(Jij − p)σiσj


Lower bound:

E[exp(2NFN,m)] ≤ e2αE2[exp(NFN,m)]

Paley–Zygmund inequality, η ∈ (0, 1)

P
(
X ≥ η EX

)
≥ (1− η)2

(EX)2

EX2
,

Talagrand’s concentration inequality
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Potential theoretic approach (Bovier, Eckhoff, Gayrard and Klein, 2001)

Translates the problem of understanding the metastable behaviour of Markov
processes to the study of capacities of electric networks. Link between mean
metastable crossover time and capacity.
For A,B disjoint subsets of SN , the key formula is

EνA,B [τB ] =
∑
σ∈A

νA,B(σ)Eσ[τB ] =
1

cap(A,B)

∑
σ′∈SN

µN (σ′)hAB(σ′),

where
cap(A,B) =

∑
σ∈A

µN (σ)Pσ(τB < τA)

and hAB is called harmonic function

hAB(σ) =

{
Pσ(τA < τB) σ ∈ SN \ (A ∪B),

1A(σ) σ ∈ A ∪B.
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Capacity estimates

We are interested in EνA,B [τB ] =
1

cap(A,B)

∑
σ′∈SN

µN (σ′)hAB(σ′)

with A = SN [m−(N)], B = SN [m+(N)]

Dirichlet principle

cap(A,B) = inf
g:SN→[0,1]

g|A=1,g|B=0

1

2

∑
σ,σ′∈SN

µN (σ)pN (σ, σ′)[g(σ)− g(σ′)]2.

Thomson principle

cap(A,B) = sup
φ∈UAB

1

D(φ)
, D(φ) =

∑
(σ,σ′)∈E

φ(σ, σ′)2

µN (σ)pN (σ, σ′)

Idea
Estimate capacity in terms of the capacity of the CW model
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Thank you for your attention!
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