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Abstract

How can one use ideas, tools, and intuition from statistical physics to solve problems
in extremal, probabilistic, and enumerative combinatorics? These lecture notes give an
introduction to this topic, beginning with some basics of statistical physics, showing the
connections between statistical physics and combinatorics, and then developing some
statistical physics based probabilistic methods in combinatorics.
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1 Fundamental of Statistical Physics

In this lecture we go over the basic objects and questions of statistical physics and introduce
much of the terminology we’ll use going forward.

Statistical physics is interested in many different types of physical phenomena and the
methods of statistical physics have been applied to many problems outside of physics. In these
notes we will be primarily concerned with one of the oldest and most fundamental questions
in the field: how do the microscopic interactions between molecules or particles influence
the macroscopic behavior of a gas, fluid, magnetic material, or other system. Of particu-
lar interest is the phase transition phenomenon, in which small changes in the microscopic
interactions lead to qualitative changes in the macroscopic behavior.

1.1 Gibbs measures and partition functions

While statistical physics encompasses many different types of models, for now we will focus
on spin models on graphs. This setting is not only rich enough to exhibit many interesting
phase transition phenomena, but it is also most relevant to combinatorial applications. We
first define a general model then give some important examples.

Fix a finite set of spins Ω. Typical choices include

• Ω = {0, 1}

• Ω = {−1, 1}

• Ω = {Red, Blue, Green}

• Ω = {1, . . . , q}.

For a graph G = (V,E), the set of possible spin configurations is ΩV , all assignments of
spins from Ω to the vertices of G.

Next define an energy function (or Hamiltonian) from ΩV → R∪{+∞} that respects the
graph structure (as a sum of functions vertex spins and pairs of spins across edges):

H(σ) =
∑
v∈V

f(σv) +
∑

(u,v)∈E

g(σu, σv)

where f : Ω→ R and g : Ω× Ω→ R ∪ {+∞} is symmetric. If g takes the value +∞ we say
that there is a hard constraint in the model.

The partition function of the spin model at inverse temperature β ∈ R is

ZG(β) =
∑
σ∈ΩV

e−βH(σ) . (1)

The Gibbs measure is the probability distribution on ΩV defined by

µG,β(σ) =
e−βH(σ)

ZG(β)
, (2)
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where the partition function plays the role of the normalizing constant ensuring µG,β is a
probability distribution.

Example 1. The ferromagnetic Ising model with no external field. Let Ω = {+1,−1},
f(σv) ≡ 0, g(σu, σv) = −σuσv. Then µG,β(σ) is proportional to e2βM(G,σ) where M(G, σ)
is the number of edges of G whose endpoints receive the same spin under σ (monochromatic
edges). If β > 0 then configurations with more monochromatic edges are preferred; this case
is the ferromagnetic case.

To obtain the antiferromagnetic Ising model we take g(σu, σv) = σuσv; then we prefer
edges with different spins on their endpoints.

We can add a (uniform) external field by taking f(σv) = aσv. If a < 0 we prefer +1
spins.

Consider the ferromagnetic Ising model (with no external field) on (Z/nZ)d, the d-
dimensional discrete torus. If β is large, then we more strongly prefer vertices to have the
same spin as their neighbors.

Example 2. Hard-core model (hard-core lattice gas). Ω = {0, 1}, f(σv) = −σv · log λ,
g(1, 1) = +∞, g(0, 0) = g(0, 1) = g(1, 0) = 0. β = 1.

More conveniently, we can associate an independent set I of G (set of vertices that spans
no edges) with its indicator vector σ so that σv = 1v∈I . Then

µG(I) =
λ|I|

ZG(λ)
(3)

where
ZG(λ) =

∑
I∈I(G)

λ|I| =
∑
k≥0

λkik(G) . (4)

Here I(G) is the set of all independent sets of G and ik(G) is the number of independent sets
of size k in G. The parameter λ is the fugacity or activity and governs whether we prefer
small or large independent sets.

The partition function of the hard-core model, ZG(λ), is also known as the indepen-
dence polynomial in combinatorics. ZG(λ) encodes a lot of combinatorial information.
ZG(1) = |I(G)|, the number of independent sets of G; the highest order term in ZG(λ)
is the independence number of G, α(G), and its coefficient is the number of maximum size
independent sets of G.

Take for example, G = C4, the cycle on 4 vertices. Then ZG(λ) = 1 + 4λ+ 2λ2. For any
v ∈ V (G), the probability of choosing I = {v} in the hard-core model on G is λ

1+4λ+2λ2 .

Example 3. The Potts model. The Potts model is a generalization of the Ising model to
q ≥ 2 spins (or colors); that is, Ω = {1, . . . , q}. Configurations are assignments of q colors

to the vertices of a graph. A configuration is chosen with probability eβM(G,σ)

ZG(q,β) where M(G, σ)
is the number of monochromatic edges of G under the coloring σ. β ≥ 0 is the ferromagnetic
and β ≤ 0 the antiferromagnetic case.

In general, the inverse temperature β controls the strength of the interaction in the model.
At high temperatures (small β, local interactions are weak, while at low temperatures (large
β), local interactions are strong. In other words,
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Hard-core model
On  the hard-core model exhibits a phase transition as  changesℤd λ
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High temperature Low temperature

Figure 1: Two instances of the hard-core model on Z2

Figure 2: Two instances of the 4-color ferromagnetic Potts model on Z2

• At β = 0 (infinite temperature) the Gibbs measure is simply uniform on ΩV and so
each vertex receives a uniform and independent spin from Ω.

• At β = +∞ (zero temperature), the Gibbs measure is uniform over the ground states of
the model: the configurations σ that minimize the energy H(·). For Gibbs measures on
lattices like Zd, it is often1 easy to understand the ground states (e.g. all even/all odd
occupied configurations for hard-core; monochromatic configurations for Ising/Potts).
For general graphs though, this need not be the case. In particular, finding a ground
state in the hard-core model on a general graph is the max independent set problem, a
classic NP-hard problem. Similarly, finding and understanding the ground states of anti-
ferromagnetic models on random graphs is a challenging problem, both mathematically

1But not always! See e.g. the Edwards-Anderson model.
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and algorithmically.

• Taking β positive and finite interpolates between independence (pure entropy) and
optimization (pure energy). Understanding the Gibbs measure and partition function
at positive temperature requires balancing energy and entropy.

From the combinatorics perspective, the Gibbs measure interpolates between two objects
we study a lot: a purely random object (say a uniformly random cut in a graph) and an
extremal object (the max cut or min cut in a graph).

An important theme in statistical physics is that the qualitative properties of the two
ends of the interpolation persist at positive, finite temperatures: a weakly interacting system
has many of the properties of an independent system, while a strongly interacting system
correlates strongly with an extremal object. The switch from one qualitative regime to the
other is a phase transition, one of the main topics of statistical physics.

Not all Gibbs measures are spin models on graphs. Some other important examples
include the following, some of which also have particular importance in combinatorics.

1. The monomer-dimer model. Allowed configurations are matchings in G, with

µG,λ(M) = λ|M|

Zmatch
G (λ)

. ‘Dimers’ are edges in the matching while ‘monomers’ are un-

matched vertices. The monomer-dimer model is the hard-core model on the line graph
of G. This is an example of an edge coloring model (see e.g. [76]).

2. Spin models on hypergraphs. Here the energy function H is a sum of functions on
vertices and functions on hyperedges. For example, we can consider the hard-core
model on a hypergraph G = (V,E). Configurations are subsets S of vertices that
contain no hyperedge, weighted by λ|S|. An interaction on a hyperedge of size > 2 is
called a multibody interaction.

3. Gibbs point processes (continuum models). The hard sphere model [54] is a continuum
model of a gas and perhaps the original model in statistical mechanics. This is a
probability distribution over packings of equal-sized spheres in Euclidean space.

Gibbs measures arise in many other contexts beyond statistical physics, including machine
learning, Bayesian statistics, mathematical biology, and many others. They are sometimes
called probabilistic graphical models, Markov random fields, log linear models, exponential
families, or Boltzmann distributions.

1.2 Markov random fields

A Gibbs measure defined as a spin model on a graph (with interactions across edges) is a
Markov random field with respect to the graph. This means that it satisfies the following
spatial Markov property. Let A,B, S be disjoint subsets of vertices of G so that S separates
A and B: any path from a vertex a ∈ A to a vertex b ∈ B must pass through S. Then with
respect to the Gibbs measure µG, if we condition on the spins in S, σS = τS , the spins σA in
A and σB in B are independent.
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A special case of the spatial Markov property is that the spin at v, σv, is independent of
the other spins in the graph conditioned on the spins of its neighbors σN(v). We can write
down a formula for the distribution of σv given that σN(v) = τN(v):

µG(σv = ω|σN(v) = τN(v)) =
exp

[
−β
(
f(ω) +

∑
u∈N(v) g(ω, τu)

)]
∑

ω′∈Ω exp
[
−β
(
f(ω′) +

∑
u∈N(v) g(ω′, τu)

)] . (5)

For the hard-core model, this formula simplifies considerably. Say v is blocked with respect
to an independent set I if N(v) ∩ I 6= ∅ and unblocked otherwise. In particular, v can only
be in I if it is unblocked. Then we have µG,λ(v ∈ I|v unblocked) = λ

1+λ .

This spatial Markov property makes it easy to compute the partition function of a spin
model on a tree.

1.3 Moments, cumulants, and derivatives of the log partition function

The energy H(·) is a local function, with respect to the geometry of the underlying graph: it is
a sum of functions on vertices and edges. As a random variable, H(σ) is a locally computable
statistic or observable of the model (it can be computed from σ by summing over vertices
and edges). For instance in the hard-core model H(σ) counts the size of an independent set
while in the Ising and Potts models H(σ) counts the number of monochromatic edges (or
equivalently the number of crossing edges of a cut).

As we will see, understanding the behavior of the random variable H(σ) for large under-
lying graphs can tell us a lot about the behavior of the model and any phase transitions that
might occur as parameters are varied.

To begin to understand the random variable H(σ) we’d like to know its expectation,
variance, and then perhaps higher moments.

We can write down the expectation:

E[H] =
∑
σ∈ΩV

H(σ)µG(σ)

=
∑
σ∈ΩV

H(σ)
e−βH(σ)

ZG(β)

=

∑
σ∈ΩV H(σ)e−βH(σ)

ZG(β)

=
− ∂
∂βZG(β)

ZG(β)

= − ∂

∂β
logZG(β) . (6)

In the case of the hard-core model (due to the slightly different form of the distribution),
we have

EG,λ|I| =
∑

I∈I(G)

|I|µG,λ(I)
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=
∑

I∈I(G)

|I| λ
|I|

ZG(λ)

=
1

ZG(λ)

∑
I∈I(G)

|I|λ|I|

=
λ ∂
∂λZG(λ)

ZG(λ)

= λ
∂

∂λ
logZG(λ) . (7)

This is an important equation that we will use throughout this lecture series. We now
see the same fact in more generality.

For a random variable X, its moment generating function is MX(t) = EetX . Its cumulant
generating function is its logarithm of the moment generating function KX(t) = logEetX .
The cumulants of X are the coefficients in the Taylor series around 0:

KX(t) =
∞∑
n=1

κn(X)
tn

n!
. (8)

Or in other words, κn(X) = K
(n)
X (0).

Cumulants are related to moments but are often more convenient to work with in sta-
tistical physics. For example, the cumulants of a Gaussian N(µ, σ2) are κ1 = µ, κ2 = σ2,
κk = 0 for k ≥ 3 (and the vanishing of the higher cumulants characterizes the Gaussian
distribution). The cumulants of a Poisson(λ) random variable are all λ.

The partition function (1) looks similar to a moment generating function, and in fact we
can write the moment generating function of the random variable H(σ) as a ratio of partition
functions:

EetH(σ) =
1

ZG(β)

∑
σ

etH(σ)e−βH(σ)

=
ZG(β − t)
ZG(β)

, (9)

which gives

KH(t) = logZG(β − t)− logZG(β) . (10)

Thus taking derivatives of logZ(β) in β we obtain the cumulants of the random variable
H(σ). Above we computed

d

dβ
logZ(β) = −EH(σ) = −κ1(H) .

We can do a similar calculation with the second derivative:

d2

dβ2
logZ(β) =

d2

dβ2Z(β)

Z(β)
−

(
d
dβZ(β)

Z(β)

)2

7



= E[H(σ)2]− (EH(σ))2

= var(H(σ))

= κ2(G) .

The higher derivatives recover the higher cumulants of the energy:

dk

dβk
logZ(β) = (−1)kκk(H) . (11)

1.4 Multivariate partition functions

It is often useful and interesting to generalize partition functions or graph polynomials from
a single variable to multiple variables (for a great discussion of this, see [70]).

The multivariate hard-core partition function (or multi-variate independence polynomial)
of a graph G is

ZG(λ) =
∑

I∈I(G)

∏
v∈I

λv , (12)

where λ = (λv)v∈V (G) is a vector of activities indexed by the vertices of G. This is a
generalization since we can obtain ZG(λ) by taking λ ≡ λ. ZG(λ) is a multi-linear polynomial.

We can do the same for a general Gibbs measure. If our original model has partition
function

ZG(β) =
∑

σ∈{±1}V
e−βH(σ)

we can add non-uniform external fields t = (tv)v∈V (G) and set

ZG(β, t) =
∑

σ∈{±1}V
e−βH(σ)

∏
v∈V (G)

etvσv . (13)

We recover the original partition function by taking t ≡ 0.

More generally if we have a q-spin model; that is, |Ω| = q, we can pick one distinguished
spin ω, and put non-uniform external fields in the direction of ω. This gives the partition
function

ZG(β, t) =
∑
σ∈ΩV

e−βH(σ)
∏

v∈V (G)

etv1σv=ω (14)

and Gibbs measure

µG,β,t(σ) =
e−βH(σ)

∏
v∈V (G) e

tv1σv=ω

ZG(β, t)
. (15)

External fields introduce a bias in favor (or against if the external field is negative) of a
certain spin. The (log of the) fugacity λ in the hard-core model is an external field favoring
(or penalizing) occupied vertices.

An external field is uniform if it is the same at every vertex. A non-uniform external field
is consistent if the sign of the external field is the same at every vertex.
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1.5 Marginals and correlations

Central to the statistical physics point of view is considering how correlations in a given
model behave and how this behavior depends on the parameters. All of the discussion below
pertains to general graphs, but for intuition it is helpful to keep in mind a graph like Z2 or
Zd with very natural geometry.

We will also focus here mostly on two-spin models, like Ising or hard-core where a prob-
ability distribution on the spin set Ω can be specified by its expectation.

We will use the following notation: σv ∈ Ω is the spin at vertex v in the configuration σ.
For a subset of vertices S ⊆ V (G), σS ∈ ΩS is the spin assignment to S given by σ (in other
words it is the restriction of σ to the coordinates given by S).

The marginal or occupation probability of a vertex v is µv = E[σv]; for instance, in the
hard-core model µv = P (v ∈ I). (For a q-spin model like Potts the marginal would be
a probability distribution on Ω = [q], or we could specify a single spin ω and ask for the
marginal probability of ω: P (σv = ω)).

For a pair of vertices u, v, the joint marginal is µu,v = E[σuσv]. In the hard-core model,
this is µuv = PrG,λ[u, v ∈ I]. (For a q-spin model, the joint marginal would be described by
a q × q matrix).

For a subset S ⊆ V , the joint marginal is µS = E[
∏
v∈S σv]. If |S| = k, then µS is also

called the k-point correlation function.

We are often interested in how strong correlations between spins are, as a function of the
parameters of the model and the graph distance between vertices. A natural way to measure
the correlation between the spins at vertices u and v is to compute a covariance:

κ(u, v) = µuv − µuµv .

If σu and σv were independent then κ(u, v) would be 0; if κ(u, v) is small in absolute value
then we can say σu and σv are weakly correlated. The quantity κ(u, v) is called the truncated
2-point correlation function.

1.5.1 Exponential decay of correlations

In probability and combinatorics we are very happy to work with independent random vari-
ables. We can compute variances, prove Chernoff bounds, prove Central Limit Theorems. In
many or most interesting situations, however, we are not working with independent random
variables. Figuring out how to generalize tools from the independent case is an important
topic in probability theory. (For example, Martingales and Azuma’s inequality generalize
Chernoff bounds).

An important heuristic in statistical physics is that a weakly interacting system is well
approximated by a system of independent spins or particles. We will see several precise
characterizations of this heuristic, including several notions of ‘weakly interacting’ and several
notions of ‘well approximated by’.

One notion of weakly interacting is that of decay of correlations.
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Definition 1.1. Let G be a family of graphs. We say a family of Gibbs measures µG, G ∈ G,
exhibits exponential decay of correlations if there exists constants A,B > 0 so that for all
G ∈ G, and all u, v ∈ V (G),

|κ(u, v)| ≤ Ae−Bdist(u,v) , (16)

where dist(u, v) is the graph distance from u to v in G.

Note that exponential decay of correlations only makes sense for an infinite family of
graphs (or for an infinite graph G if we define an infinite volume Gibbs measure, see Sec-
tion 1.8). For any finite graph G (or any finite collection of finite graphs) we can always find
A,B satisfying (16); what is important in the definition is that these constants are uniform
over the collection of graphs G.

Exercise 1. Let Pn be the path graph on n vertices. Fix λ > 0. Show that hard-core model
on the family of path graphs {Pn}n≥1 exhibits exponential decay of correlations. Hint: write
down a recursive equation for ZPn(λ).

1.6 Joint cumulants and truncated k-point correlation functions

We can also define truncated k-point correlation functions. To do that it will be helpful to
define the joint cumulants of a collection of random variables.

The moment generating function for a collection of random variables ~X = (X1, . . . , Xk)
defined on the same probability space is

MX1,...,Xk(t) = Ee
∑k
j=1 tjXj ,

a function from Rk → R. The joint cumulant generating function is

KX1,...,Xk(t) = logEe
∑k
j=1 tjXj .

The joint cumulants of ~X are the coefficients of the multivariate Taylor series for KX1,...,Xk(t)
around t = ~0. More precisely, for non-negative integers `1, . . . , `k, we define the joint cumulant

κ(X
(`1)
1 , . . . , X

(`k)
k ) =

∂
∑k
j=1 `j∏
j ∂t

`j
j

KX1,...,Xk(t)
∣∣
t=~0

.

Specializing to our multivariate spin model with partition function

ZG(β, t) =
∑
σ∈ΩV

e−βH(σ)
∏

v∈V (G)

etvσv ,

we can define the truncated k-point correlation function

κ(u1, . . . , uk) =
∂k

∂tu1 · · · ∂tuk
logZG(β, t)

∣∣
t=~0

,

where u1, . . . , uk ∈ V (G).
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Exercise 2. Prove that

µv =
∂

∂tv
logZG(β, t)

∣∣
t=~0

(17)

and

µuv − µuµv = κ(u, v) =
∂2

∂tu∂tv
logZG(β, t)

∣∣
t=~0

. (18)

1.7 Dynamics

So far we have discussed the equilibrium measure µG. It is also very natural from several
different perspectives (physical, computational, mathematical) to consider dynamics on the
space of configurations ΩV ; that is a stochastic process on ΩV whose behavior at large time
scales looks like µG.

In this course we will study Markov chains on ΩV whose stationary distribution is µG.
A complete study of Markov chains is beyond the scope of this course; for reference see [53].
We recall a few important definitions here.

Definition 1.2. A discrete-time, discrete space Markov chain on a finite or countable set Σ
is a stochastic process X0, X1, X2, . . . that satisfies the Markov property: the distribution of
Xt conditioned on X0, . . . , Xt−1 equals the distribution of Xt conditioned on Xt−1.

This means we can describe a Markov chain by the distribution ν0 of the initial state X0

and the transition matrix P (·, ·), defined by P (x, y) = P (Xn+1 = y|Xn = x). We can also
define the t-step transition probabilities: P t(x, y) = P (Xn+t = y|Xn = x)

Definition 1.3. A Markov chain is irreducible if for every x, y ∈ Σ there exists t so that
P t(x, y) > 0. A Markov chain is aperiodic if for every x ∈ Σ the gcd of the set {t ≥ 1 :
P t(x, x) > 0} is 1.

For example, the simple random walk on a connected graph is irreducible, but on a
disconnected graph it is not. The simple random walk on a bipartite graph is not aperiodic.
We can make any periodic Markov chain aperiodic by making it ‘lazy’: at each step, with
probability 1/2 (or some other positive constant) stay in the current state and with probability
1/2 follow the law of the Markov chain.

Definition 1.4. A probability distribution π on Σ is a stationary distribution for the Markov
chain defined by P if for all x ∈ Σ,

π(X) =
∑
y∈Σ

π(y)P (y, x) .

In particular, if π is a stationary distribution and X0 is distributed according to π0 = π
then Xk is distributed according to π for all k ≥ 0.

How can we find a stationary distribution? There is a useful technique for a special class
of Markov chains. A Markov chain P is reversible with respect to π if for all x, y ∈ Σ,

π(x)P (x, y) = π(y)P (y, x) . (19)
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This is called the detailed balance equation.

If P is reversible with respect to π then π is a stationary distribution for P . While most
(or perhaps all) the Markov chains we will study in these notes are reversible, non-reversible
Markov chains can be very powerful tools for sampling (e.g. [9, 8]) but are often harder to
analyze mathematically.

A fundamental result on Markov chains states that if a Markov chain is irreducible and
aperiodic then there exists a unique probability distribution µ on Σ so that πn → π as n→∞,
where πn is the distribution of Xn.

1.7.1 Markov chains for spin models

We now specialize to Markov chains for spin models on graphs (for a short introduction to
the topic see [63]).

Here the state space will be the set of all possible configurations, ΩV , or in the case of
models with hard constraints, the set of all allowed configurations (I(G) in the case of the
hard-core model on a graph G).

Our goal will be to find a Markov chain on ΩV with stationary distribution µG, the Gibbs
measure. There are many such Markov chains but for now we will be most interested in local
Markov chains: Markov chains in which at most one (or at most a bounded number of) spins
are changed in each step. This is for two reasons: such Markov chains may in some sense
capture the way a physical system evolves over time and these Markov chains are often easy
to implement computationally.

The Glauber dynamics

Given a configuration Xt ∈ ΩV we obtain Xt+1 as follows:

1. Pick v ∈ V uniformly at random.

2. Resample the spin at v from the Gibbs measure µG conditioned on the spins at the
other vertices.

If µG is a Gibbs measure with pairwise interactions across edges, the second step is
equivalent to resampling conditioned on the spins of the neighbors of v.

Exercise 3. 1. Show that the Glauber dynamics are reversible with respect to the Gibbs
measure µG.

2. Show that the Glauber dynamics are irreducible and aperiodic. (Assume that H(σ) ∈
[0,∞) for all σ, or prove for the hard-core model).

Exercise 4. Let Σq(G) be the set of all proper q-colorings of G and suppose |Σq| > 0. Let
µG,q denote the uniform distribution on Σq(G).

1. Give an example of graph G so that for some q ≥ 2, Σq(G) is disconnected under moves
that change the color of one vertex at a time.
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2. Give conditions in terms of q and the maximum degree of ∆ to ensure that Σq(G) is
connected under single spin updates (changing the color of one vertex at a time).

3. Describe precisely a single spin update Markov chain for sampling from µG,q (i.e.
Glauber dynamics).

1.7.2 Mixing times

Markov chains are widely used to sample from probability distributions on large sets Σ. If we
want to sample from µG by running a Markov chain X1, X2, . . . with stationary distribution
µG, an important question is how long we need to run the chain to get an approximately
correct sample from µG.

To answer this we need a good measure of ‘approximately correct’.

Definition 1.5. Let µ1 and µ2 be two probability measures on the same sample space Σ with
the same sigma-field F . Then the total variation distance between µ1 and µ2 is

‖µ1 − µ2‖TV = sup
A∈F
|µ1(A)− µ2(A)| .

For a discrete probability space, we have

‖µ1 − µ2‖TV =
1

2

∑
σ∈Σ

|µ1(σ)− µ2(σ)|

=
∑

σ∈Σ:µ1(σ)>µ2(σ)

µ1(σ)− µ2(σ)

= µ1({σ : µ1(σ) > µ2(σ))− µ2({σ : µ1(σ) > µ2(σ)) .

With this definition we can define the Mixing time of a Markov chain.

Definition 1.6. The ε-mixing time τmix(ε) of a Markov chain with stationary distribution π
on Σ is

sup
π0∈P(Σ)

min{t ≥ 0 : ‖πt − π‖TV < ε},

where πt is the distribution of Xt given that X0 has distribution π0.

Note that for a given π0, ‖πt− π‖TV is decreasing in t. We write τmix for τmix(1/4). This
is because for any irreducible, aperiodic Markov chain with stationary distribution π, there
are constants C > 0 and α ∈ (0, 1) so that

sup
π0

‖πt − π‖TV ≤ Cαt .

This means that τmix(ε) = O(log(ε−1)) ·τmix. For these facts and much more on mixing times
see [53].

For a Gibbs measure µG on a graph G on n vertices we say a Markov chain is fast-mixing
or mixes rapidly if τmix is bounded by a polynomial in n; that is, poly-logarithmic in the size
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of the state space ΩV . We say the Markov chain is slow mixing or torpidly mixing if τmix is
superpolynomial in n (often exponential in some power of n).

Keep in mind that the size of the state space of a spin model on G is exponentially large in
n. So in the context of random walks on graphs, a random walk that mixes in time O(log n)
is fast mixing while a random walk with mixing time Ω(nc) for some c > 0 is slow mixing.
Random walks on expander graphs are fast mixing, while a random walk on a cycle, for
instance, is slow mixing.

1.8 Phase transitions

A central concept in statistical physics is that of a phase transition.

1.8.1 Boundary conditions

It will be very useful to impose boundary conditions on a Gibbs measure: that is, fixing the
spins on a subsets of vertices (the boundary) and studying the resulting conditional Gibbs
measure. We will define and study the notion of boundary conditions for arbitrary graphs
(with arbitrary boundaries) but it is useful to keep in mind a box in Zd with its natural
geometric boundary.

Specify a spin model with spin set Ω and energy function H(·). Let G = (V,E) be a graph
and let S ⊆ V be a specified set of boundary vertices. Let τS ∈ ΩS be a fixed assignment
of spins to the vertices in S. Then the Gibbs measure with boundary conditions τS is the
probability distribution µτSG on ΩV defined by

µτSG (σ) =
e−βH(σ)1σS=τS

ZτSG (β)

where
ZτSG (β) =

∑
σ∈ΩV

e−βH(σ)1σS=τS .

In words, µτSG is the distribution of µG conditioned on the event {σS = τS}.
In the case of the hard-core model, boundary conditions take a particularly simple form.

If we specify that a vertex u is not in I, then this is the same as removing u from V (G). If
we specify that u is in I, then this is the same as removing N(u) from V (G) and keeping u
as an occupied isolated vertex (which will have no effect on the other vertices of G).

1.8.2 Infinite volume limits

How can we define a Gibbs measure on an infinite graph like Zd or the infinite ∆-regular
tree? We cannot define it via (1) and (2) since the number of vertices is infinite.

One approach to make sense of a Gibbs measure on an infinite graph is that of Dobrushin,
Lanford, and Ruelle based on conditional probabilities and boundary conditions.

A specification of a spin model is a fixed choice of parameters, say fixing λ in the hard-core
model, or fixing the function f, g in the general formulation of a spin model on a graph.
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For a given specification and a countably infinite graph G, we say a probability measure
µ on ΩV (G) is a Gibbs measure with the given specification if for every finite set Λ ⊂ V (G)
and every configuration τ ∈ ΩV (G), we have the following equality between conditional prob-
abilities and finite volume Gibbs measures with boundary conditions:

µ(σΛ = ·
∣∣σΛc = τΛc) = µτ∂Λ

Λ (·) , (20)

where ∂Λ is the external neighborhood of Λ, vertices in Λc that are joined to some vertex in
Λ. In words, this condition says that the conditional distributions of µ induced on any finite
set by a configuration on its complement is exactly the finite volume Gibbs measure with the
same specification and the given boundary condition. For more details on the construction
of infinite volume Gibbs measures see [66, 36, 28].

Under very general conditions, there always exists an infinite volume Gibbs measure with
a given specification on an infinite graph G. The main question is whether there is only one:
is the infinite volume Gibbs measure unique or not?

1.8.3 Notions of phase transition

1. Uniqueness / non-uniqueness. We say a phase transition occurs at βc if for all ε small
enough there exists a unique infinite volume Gibbs measure for β = βc−ε and multiple
infinite volume Gibbs measures for β = βc + ε.

2. Analyticity. We say a phase transition occurs at βc if the infinite-volume pressure p(β)
is non-analytic at βc.

3. Correlation decay. We say a phase transition occurs at βc if for all ε small enough
correlations decay exponentially fast when β = βc − ε and do not decay exponentially
fast when β = βc + ε.

1.8.4 Uniqueness methods

Here we list some approaches to proving absence of phase transition or uniqueness of Gibbs
measure for a given specification. We will see some of these methods in more details in
upcoming lectures.

• Cluster expansion

• Disagreement percolation

• Markov chain mixing

• Computational trees

1.8.5 Phase coexistence methods

Conversely, how does one show that multiple Gibbs measures exist for a given specification?
There are a number of different techniques, depending on the model and the type of graph. For
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infinite trees, one can set up a recursion for marginal probabilities and show that there exist
multiple fixed points. For lattices like Zd, one usually uses a Peierls argument, bounding the
number and ‘cost’ of contours separating the origin from infinity; a much more sophisticated
form of this technique is Pirogov-Sinai theory.

Background reading

The textbook of Friedli and Velenik [28] covers many fundamentals of statistical physics
models on lattices from a mathematical point of view. Ruelle’s textbook [66] is a classic
reference for both lattice and continuum systems. The lecture notes of Adams [1] cover
the mathematical fundamentals of statistical physics. It is also well worth reading about
statistical physics from a physics perspective; the lecture notes of Tong are a good place to
start [77]. Finally, Okounkov’s recent overview of the work of Hugo Duminil–Copin [59] gives
a nice feeling for some exciting questions and recent results in statistical physics.

1.9 Exercises and examples

1.9.1 Solved examples

1. Let ZG(λ) be the hard-core partition function on a graph G. Let I be a random
independent set from G distributed as µG,λ, the hard-core model at fugacity λ. Let
αG(λ) = E|I|.

(a) Write an expression for αG(λ) in terms of logZG(λ).

(b) Prove that αG(λ) is strictly increasing as a function of λ (assume the graph G has
at least one vertex).

(c) Write an expression for the number of maximum independent sets of G in terms
of a limit involving logZG(λ).

(d) Suppose G has n vertices and maximum degree ∆. Show that

var(|I|) ≥ cn

where c is a constant that depends on ∆ and λ. Hint(s): use the law of total
variance; use the fact that G has an independent set of size at least n/(∆ + 1).

Solution:

(a) We can write

αG(λ) =
∑

I∈I(G)

|I|µG(I)

=

∑
I∈I(G) |I|λ|I|

ZG(λ)

= λ

∑
I∈I(G) |I|λ|I|−1

ZG(λ)
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= λ
Z ′G(λ)

ZG(λ)

= λ(logZG(λ))′ .

(b) We take the derivative of αG(λ) with respect to λ:

α′G(λ) =
λZG(λ)Z ′′G(λ) + ZG(λ)Z ′G(λ)− λ(Z ′G(λ))2

ZG(λ)2

=
var(|I|)
λ

> 0

since {|I| = 0} and {|I| = 1} both have positive probability when λ > 0.

(c) For λ� 2n, ZG(λ) ≈ iα(G)λ
α(G); in particular,

1 ≤ ZG(λ)

iα(G)λα(G)
≤ 1 +

2n

λ
.

We can recover α(G):

α(G) = lim
λ→∞

logZG(λ)

log λ
.

Then once we know α(G) we can recover iα(G):

iα(G) = lim
λ→∞

ZG(λ)

λα(G)
.

(d) Let J ∈ I(G) be an independent set of size at least n/(∆ + 1). Let X = |I|. Let
Y be the number of vertices of J ‘unblocked’ by I; that is,

Y = |{x ∈ J : N(x) ∩ I = ∅}| .

The Law of Total Variance says

var(X) = E[var(X|I ∩ Jc)] + var[E(X|I ∩ Jc)] .

By the spatial Markov property, given I∩Jc, the unblocked vertices of J appear in
I independently with probability λ/(1 +λ), and so var(X|I∩ Jc) = λ

(1+λ)2 ·Y . On

the other hand, any vertex in a max-degree ∆ graph is unblocked with probability
at least 1

(1+λ)∆ and so

EY ≥ |J | 1

(1 + λ)∆
≥ n

(∆ + 1)(1 + λ)∆
.

Putting this together gives

var(X) ≥ n · λ

(∆ + 1)(1 + λ)∆+2
.
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2. Let G be a graph and A ⊂ V (G) be a set of d vertices. Suppose you know that
µG,λ(I ∩ A = ∅) = p. Form the graph G′ by adding a single vertex v to V (G) and
connecting v to each of the vertices of A.

(a) Compute logZG′(λ)− logZG(λ).

(b) Compute µG′,v,λ (the occupation probability of v in the hard-core model on G′ at
fugacity λ).

(This is a baby version of the ‘cavity method’)

Solution:

(a) Independent sets of G′ can be divided in two sets: those that contain v and those
that do not. Independent sets that do not contain v are exactly the independent
sets of G. Independent sets that contain v are independent sets of G that contain
no neighbor of v, plus v. We can then write

ZG′(λ) = ZG(λ) + λ
∑

I∈I:I∩N(v)=∅

λ|I| .

Since

p = µG,λ(I ∩A = ∅) =

∑
I∈I:I∩N(v)=∅ λ

|I|

ZG(λ)

we have

ZG′(λ)

ZG(λ)
= 1 + λp

and so logZG′(λ)− logZG(λ) = log(1 + λp).

(b) By a similar calculation,

µG′,v,λ =
λ
∑

I∈I:I∩N(v)=∅ λ
|I|

ZG′(λ)

=
λpZG(λ)

(1 + λp)ZG(λ)

=
λp

1 + λp
.

(As a check, imagine v has no neighbors in G′; then this formula reduces to
λ/(1 + λ), the probability an isolated vertex is occupied).
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2 Combinatorics and statistical physics

In this lecture we will look at combinatorics problems from the perspective of statistical
physics and see the usefulness of some of statistical physics tools.

2.1 Terminology and perspectives

Some of the central questions in combinatorics can be summarized as follows.

1. Extremal problems: what is the largest structure of a given type?

2. Counting: how many structures of a given type are there?

3. Typical structure: what are the structural properties of a typical (uniformly random)
structure of a given type?

4. Stability: are all (or most?) near-extremal structures of a given type close in some
metric to an extremal structure?

Each of these questions has an analogue in statistical physics.

1. Ground state: which configuration σ minimizes H(σ)?

2. Partition function: compute or approximate the partition function Z.

3. Gibbs measure: what is the typical structure of a sample from the Gibbs measure µ?

4. Order/disorder phase transition: at positive temperature do samples from the
Gibbs measure resemble (in some sense) a ground state?

These questions are essentially the same but using different language. On the other hand,
the perspectives of combinatorics and statistical physics can be quite different: combinatorics
is often concerned with optimizing over all graphs (or hypergraphs), while statistical physics
is often focused on specific infinite graphs like Zd.

This difference in perspectives can often be very useful. Some important results in sta-
tistical physics would be very hard to prove without taking the worst-case combinatorics
perspective (like the Lee–Yang [52] and Heilmann–Lieb [40] theorems). On the other hand,
by focusing on specific graphs, statistical physicists can understand behavior of these models
very precisely and provide intuition useful in other settings.

In the next section, we will prove a couple of results about independent sets in graphs,
taking a statistical physics approach to combinatorics problems.

2.2 Independent sets in regular graphs

Which d-regular graph has the most independent sets? This question was first raised in the
context of number theory by Andrew Granville, and an approximate answer was given by
Noga Alon [3] who applied the result to problems in combinatorial group theory.

Jeff Kahn gave a tight answer in the case of d-regular bipartite graphs.
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Theorem 2.1 (Kahn [49]). Let 2d divide n Then for any d-regular, bipartite graph G on n
vertices,

i(G) ≤ i(Hd,n) =
(

2d+1 − 1
)n/2d

,

where Hd,n is the graph consisting of n/2d copies of Kd,d.

In terms of the independence polynomial, we can rephrase this as follows. For any d-
regular, bipartite G,

ZG(1) ≤ ZKd,d(1)n/2d ,

or, more convenient from our perspective,

1

|V (G)|
logZG(1) ≤ 1

2d
logZKd,d(1) .

Work of Galvin and Tetali [34] and Zhao [80] extended this result to all values of the inde-
pendence polynomial and all d-regular graphs.

Theorem 2.2 (Kahn; Galvin-Tetali; Zhao). For all d-regular graphs G and all λ > 0,

1

|V (G)|
logZG(λ) ≤ 1

2d
logZKd,d(λ) .

See Galvin’s lecture notes on the entropy method [31] for an exposition of the proof
of Theorem 2.1 and extensions. See also the recent work of Sah, Sawhney, Stoner, and
Zhao [67, 68] for an extension to irregular graphs among other results.

The question of minimizing the number of (weighted) independent sets in a d-regular
graph is somewhat simpler: the answer is the clique Kd+1, proved by Cutler and Radcliffe [21];
for a short proof see the exercises.

Among all d-regular graphs, the graph with the smallest scaled independence number is
the clique Kd+1. If we impose the condition that G has no triangles, then it is not immediately
clear which graph has the smallest independence number α(G).

Following Ajtai, and Komlós, and Szemerédi [2], Shearer proved the following.

Theorem 2.3 (Shearer [71]). For any triangle-free graph G on n vertices of average degree
at most d,

α(G) ≥ (1 + od(1))
log d

d
n .

As a consequence, Shearer obtained the current best upper bound on the Ramsey number
R(3, k).

Corollary 2.4 (Shearer [71]). The Ramsey number R(3, k) satisfies

R(3, k) ≤ (1 + ok(1))
k2

log k
.
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The random d-regular graph (conditioned on being triangle-free) satisfies

α(G) = (1 + od(1))
2 log d

d
n ,

and this is the smallest independence ratio known for a max degree d graph (in the large d
limit), and so there is potentially a factor of 2 that could potentially be gained in Shearer’s
bound. This factor of 2 would immediately give a factor 2 improvement to the upper bound
on R(3, k).

Here we will use statistical physics methods to prove a strengthening of Theorem 2.2 and
a result closely resembling Theorem 2.3 but for the average size of an independent set rather
than the maximum size.

To start we define the occupancy fraction of the hard-core model to be the expected
fraction of vertices in the random independent set:

αG(λ) =
1

|V (G)|
EG,λ|I| .

The first theorem states that Kd,d maximizes the occupancy fraction over all d-regular
graphs and all λ.

Theorem 2.5 (Davies, Jenssen, Perkins, Roberts [23]). For all d ≥ 2, all λ ≥ 0, and all
d-regular graphs G,

αG(λ) ≤ λ(1 + λ)d

2(1 + λ)d − 1
= αKd,d(λ) .

This implies Theorem 2.2 as follows:

1

n
logZG(λ) =

1

n
logZG(0) +

1

n

∫ λ

0
(logZG(t))′ dt

= 0 +

∫ λ

0

αG(t)

t
dt

≤
∫ λ

0

αKd,d(t)

t
dt

=
1

2d
logZKd,d(λ) .

The next theorem states that the expected density of an independent set in a triangle-free
graph G of max degree d is at least (1 + od(1)) log d

d , the same bound that Shearer achieves
for the maximum density (though he proves this with the weaker condition of average degree
d). This result also yields a lower bound on the number of independent sets in a triangle-free
graph.

Theorem 2.6 (Davies, Jenssen, Perkins, Roberts [24]). For all triangle-free graph G of
maximum degree d,

αG(1) ≥ (1 + od(1))
log d

d
.
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Moreover,

i(G) ≥ e(
1
2

+od(1)) log2 d
d

n .

The respective constants 1 and 1/2 are best possible and attained by the random d-regular
graph.

We start by proving Theorem 2.5 for triangle-free graphs along with Theorem 2.6. Con-
sider the hard-core model on a d-regular, triangle-free G on n vertices.

We imagine the following two-part experiment: pick a random independent set I from the
hard-core model on G and independently pick a uniformly random vertex v from V (G). We
then will record some local information about I from the perspective of v. In particular, we
say v is uncovered with respect to an independent set I if N(v) ∩ I = ∅, and we will record
Y, the number of uncovered neighbors of v with respect to the random independent set I.
The random variable Y takes integer values between 0 and d and its distribution depends on
both G and λ.

We will also use the following two facts that follow from the spatial Markov property.

Fact 1 Pr[v ∈ I|v uncovered] = λ
1+λ .

Fact 2 Pr[v uncovered|v has j uncovered neighbors] = (1 + λ)−j .

Fact 2 relies on the fact that G is triangle-free: the graph induced by the uncovered neighbors
of v consists of isolated vertices.

Now with our two-part experiment in mind, we write αG(λ) in two ways:

αG(λ) =
1

n

∑
v∈V (G)

Pr[v ∈ I]

=
1

n

λ

1 + λ

∑
v∈V (G)

Pr[v uncovered] by Fact 1

=
1

n

λ

1 + λ

∑
v∈V (G)

d∑
j=0

Pr[v has j uncovered neighbors] · (1 + λ)−j by Fact 2,

and

αG(λ) =
1

n

1

d

∑
v∈V (G)

∑
u∼v

Pr[u ∈ I] since G is d-regular

=
1

n

1

d

λ

1 + λ

∑
v∈V (G)

∑
u∼v

Pr[u uncovered] by Fact 1.

Recall Y is the number of uncovered neighbors of v with respect to I. Now our two
expressions for αG(λ) can be interpreted as expectations over Y.

αG(λ) =
λ

1 + λ
EG,λ(1 + λ)−Y
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αG(λ) =
1

d

λ

1 + λ
EG,λY .

Thus the identity

EG,λ(1 + λ)−Y =
1

d
EG,λY (21)

holds for all d-regular triangle-free graphs G.

Theorems 2.5 and 2.6 are optimization problems (maximization and minimization respec-
tively) over the set of all d-regular graphs. Now we can relax these optimization problems:
instead of maximizing or minimizating αG(λ) over all d-regular triangle-free graphs, we can
maximize λ

1+λE(1 + λ)−Y over all distributions of random variables Y that are bounded be-
tween 0 and d and satisfy the constraint (21). In particular all d-regular triangle-free graphs
induce a distribution Y satisfying these conditions, but there may be additional distributions
that do not arise from graphs.

Consider the maximization problem first. By convexity we see that to maximize EY
subject to these constraints, we must put all of the probability mass of Y on 0 and d.
Because of the constraint (21), there is a unique such distribution.

Now fix a vertex v in Kd,d. If any vertex on v’s side of the bipartition is in I, then v has
0 uncovered neighbors. If no vertex on the side is in I, then v has d uncovered neighbors. So
the distribution of Y induced by Kd,d (or Hd,n) is exactly the unique distribution satisfying
the constraints that is supported on 0 and d. And therefore,

αG(λ) ≤ αKd,d(λ) .

This proves Theorem 2.5 in the special case of triangle-free graphs.

What if we want to minimize EY subject to these constraints? In this case, by convexity,
we should take Y to be constant: Y = y∗ where (1 + λ)−y

∗
= y∗

d , or in other words,

y∗ · ey∗ log(1+λ) = d.

Formally, we can use Jensen’s inequality:

1

d
EY = E(1 + λ)−Y ≥ (1 + λ)−EY

and so EY ≥ y∗ as above.

The solution is

y∗ =
W (d log(1 + λ))

log(1 + λ)

where W (·) is the W-Lambert function (that is, x = W (x)eW (x)). This gives

αG(λ) ≥ 1

d

λ

1 + λ

W (d log(1 + λ))

log(1 + λ)
. (22)

Now although αG(λ) is monotone increasing in λ, somewhat surprisingly the bound (22)
is not monotone in λ (see Figure 3 for example).

It turns out that it is best to take λ = λ(d) → 0 as d → ∞, but not as quickly as any
polynomial, that is λ(d) = ω(d−ε) for every ε > 0.
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Figure 3: λ
1+λy

∗ as a function of λ with d = 100.

We set λ = 1/ log d and derive a bound asymptotically in d. We show in the exercises
that the Lambert-W function satisfies

W (x) = log(x)− log log(x) + o(1)

as x → ∞. If λ → 0 then λ
(1+λ) log(1+λ) → 1, and W (d log(1 + λ)) = (1 + od(1)) log d. This

gives, for λ = 1/ log d,

αG(λ) ≥ (1 + od(1))
log d

d
,

and by monotonicity this extends to all larger λ.

To obtain the counting result we integrate the bound (22) for λ = 0 to 1 to obtain a lower
bound on the partition function.

1

n
log i(G) =

1

n
logZG(1) =

∫ 1

0

αG(t)

t
dt

≥
∫ 1

0

1

d

1

1 + t

W (d log(1 + t))

log(1 + t)
dt from (22)

=
1

d

∫ W (d log 2)

0
1 + u du using the substitution u = W (d log(1 + t))

=
1

d

[
W (d log 2) +

1

2
W (d log 2)2

]
=

(
1

2
+ od(1)

)
log2 d

d
.

Using a similar argument to the proof of the R(3, k) upper bound, we can use Theorem 2.6
to give a lower bound on the number of independent sets in a triangle-free graph without
degree restrictions.

Corollary 2.7 ([24]). For any triangle-free graph G on n vertices,

i(G) ≥ e
(√

2 log 2
4

+o(1)
)√

n logn
.
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Proof. Suppose the maximum degree of G is equal to d. Then i(G) ≥ 2d since we can
simply take all subsets of the neighborhood of the vertex with largest degree, and i(G) ≥
e(

1
2

+od(1)) log2 d
d

n from Theorem 2.6. As the first lower bound is increasing in d and the second
is decreasing in d, we have

i(G) ≥ min
d

max

{
2d, e(

1
2

+od(1)) log2 d
d

n

}
= 2d

∗

where d∗ is the solution to 2d = e(
1
2

+od(1)) log2 d
d

n, that is,

d∗ = (1 + od(1))

√
2
√
n log n

4
√

log 2
,

and so

i(G) ≥ e
(√

2 log 2
4

+o(1)
)√

n logn
.

This improves the bound of e

(√
log 2
4

+o(1)
)√

n logn
from [19].

In the next section we give the full proof of Theorem 2.5, dispensing with the triangle-free
assumption.

2.2.1 Linear programming and occupancy fractions

We begin by reviewing the basics of linear programming, duality, and complementary slack-
ness.

Linear programming review

Suppose we have the linear program in standard form with variables x1, . . . xn:

maximize
n∑
i=1

cixi

subject to xi ≥ 0 ∀i
n∑
i=1

Aijxi ≤ bj for j = 1, . . .m .

This is the primal LP. The corresponding dual LP has variables Λ1, . . .Λm for each constraint
of the primal and constraints for each variable of the primal:

minimize

m∑
j=1

bjΛj

subject to Λj ≥ 0 ∀j
m∑
j=1

AijΛj ≥ ci for i = 1, . . . n .
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Theorem 2.8 (Weak duality theorem). If x1, . . . , xn and Λ1, . . . ,Λm are feasible solutions
to the primal and dual LP’s respectively, then

n∑
i=1

cixi ≤
m∑
j=1

bjΛj .

In particular, the objective value of any feasible dual solution gives an upper bound on
the optimum of the primal LP. The strong duality theorem says that an optimal upper bound
can be found if both primal and dual are feasible.

Theorem 2.9 (Strong duality theorem). If the primal and dual linear programs are both
feasible, then their objective values coincide.

In particular, if we have a feasible primal solution that we believe is optimal, we can prove
this by finding a feasible dual solution with the same objective value.

The strong duality theorem implies that there are four possibilities for a primal/dual pair
of LP’s:

1. Both primal and dual are feasible and their optima coincide.

2. Both primal and dual are infeasible.

3. The primal is infeasible and the dual is unbounded.

4. The dual is infeasible and the primal is unbounded.

Very often it is useful to use complementary slackness to check for optimality. Say
x1, . . . , xn and Λ1, . . . ,Λm are feasible solutions to the primal and dual LP’s. We say com-
plementary slackness holds for the pair of solutions if:

• For each j = 1, . . . ,m either Λj = 0 or the jth constraint of the primal holds with
equality under the solution x1, . . . , xn (or both are true).

• For each i = 1, . . . , n either xi = 0 or the ith constraint of the dual holds with equality
under the solution Λ1, . . . ,Λm (or both are true).

Theorem 2.10. The feasible solutions x1, . . . , xn and Λ1, . . . ,Λm to the primal and dual LP’s
respectively are an optimal pair of solutions if and only if complementary slackness holds.

For much more on linear programming, see for example Boyd and Vandenberghe’s
book [13].

Proof of Theorem 2.5

Let G be a d-regular n-vertex graph (with or without triangles). Do the following two part
experiment: sample I from the hard-core model on G at fugacity λ, and independently
choose v uniformly from V (G). Previously we considered the random variable Y counting
the number of uncovered neighbors of v. When G was triangle-free we knew there were no
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edges between these uncovered vertices, but now we must consider these potential edges.
Let H be the graph induced by the uncovered neighbors of v; H is a random graph on at
most d vertices over the randomness in our two-part experiment. Specifically we mean the
neighbors of v not covered by vertices in V (G) \N(v); so we don’t consider covering among
the neighbors.

We now can write αG(λ) in two ways as expectations involving H.

αG(λ) =
λ

1 + λ
Pr
G,λ

[v uncovered] =
λ

1 + λ
EG,λ

[
1

ZH(λ)

]
(23)

αG(λ) =
1

d
EG,λ[I ∩N(v)] =

λ

d
EG,λ

[
Z ′H(λ)

ZH(λ)

]
, (24)

and so for any d-regular graph G, we have the identity

λ

1 + λ
EG,λ

[
1

ZH(λ)

]
=
λ

d
EG,λ

[
Z ′H(λ)

ZH(λ)

]
. (25)

Now again we can relax our optimization problem from maximizing αG over all d-regular

graphs, to maximizing λ
1+λE

[
1

ZH(λ)

]
over all possible distributions H on Hd, the set of

graphs on at most d vertices, satisfying the constraint (25).

We claim that the unique maximizing distribution is the one distribution supported on
the empty graph, ∅, and the graph of d isolated vertices, Kd. This is the distribution induced
by Kd,d (or Hd,n) and is given by

Pr
Kd,d

(H = ∅) =
(1 + λ)d − 1

2(1 + λ)d − 1

Pr
Kd,d

(H = Kd) =
(1 + λ)d

2(1 + λ)d − 1
.

To show that this distribution is the maximizer we will use linear programming duality.

Both our objective function and our constraint are linear functions of the variables
{p(H)}H∈Hd , so we can pose the relaxation as a linear program.

maximize
∑
H∈Hd

p(H) · λ

1 + λ

1

ZH(λ)

subject to p(H) ≥ 0 ∀H ∈ Hd∑
H∈Hd

p(H) = 1

∑
H∈Hd

p(H)

[
λ

1 + λ

1

ZH(λ)
− λ

d

Z ′H(λ)

ZH(λ)

]
= 0 .

The first two constraints ensure that the variables p(H) form a probability distribution; the
last is constraint (25).
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Our candidate solution is p(∅) = (1+λ)d−1
2(1+λ)d−1

, p(Kd) = (1+λ)d

2(1+λ)d−1
, with objective value

αKd,d(λ) = λ(1+λ)d−1

2(1+λ)d−1
. To prove that this solution is optimal (and thus prove the theorem),

we need to find some feasible solution to the dual with objective value αKd,d(λ).

The dual linear program is:

minimize Λp

subject to Λp + Λc ·
[

λ

1 + λ

1

ZH(λ)
− λ

d

Z ′H(λ)

ZH(λ)

]
≥ λ

1 + λ

1

ZH(λ)
for all H ∈ Hd .

For each variable of the primal, indexed by H ∈ Hd, we have a dual constraint. For each con-
straint in the primal (not including the non-negativity constraint), we have a dual variable, in
this case Λp corresponding to the probability constraint (summing to 1) and Λc corresponding
to the remaining constraint. (Note that we do not have non-negativity constraints Λp,Λc ≥ 0
in the dual because the corresponding primal constraints were equality constraints).

Now our task becomes: find a feasible dual solution with Λp = αKd,d(λ). What should
we choose for Λc? By complementary slackness in linear programming, the dual constraint
corresponding to any primal variable that is strictly positive in an optimal solution must
hold with equality in an optimal dual solution. In other words, we expect the constraints
corresponding to H = ∅,Kd to hold with equality. This allows us to solve for a candidate
value for Λc. Using Z∅(λ) = 1 and Z ′∅(λ) = 0, we have the equation

αKd,d(λ) + Λc

[
λ

1 + λ
− 0

]
=

λ

1 + λ
.

Solving for Λc gives

Λc =
(1 + λ)d − 1

2(1 + λ)d − 1
.

Now with this choice of Λc, and Λp = αKd,d(λ) = λ(1+λ)d−1

2(1+λ)d−1
, our dual constraint for H ∈ Hd

becomes:

λ(1 + λ)d−1

2(1 + λ)d − 1
+

(1 + λ)d − 1

2(1 + λ)d − 1

[
λ

1 + λ

1

ZH(λ)
− λ

d

Z ′H(λ)

ZH(λ)

]
≥ λ

1 + λ

1

ZH(λ)
. (26)

Multiplying through by ZH(λ) · (2(1 + λ)d − 1) and simplifying, (26) reduces to

λd(1 + λ)d−1

(1 + λ)d − 1
≥

λZ ′H(λ)

ZH(λ)− 1
, (27)

and we must show this holds for all H ∈ Hd (except for H = ∅ for which we know already the
dual constraint holds with equality). Luckily (27) has a nice probabilistic interpretation: the
RHS is simply EH,λ

[
|I|
∣∣|I| ≥ 1

]
, the expected size of the random independent set given that

it is not empty, and the LHS is the same for the graph of d isolated vertices, Kd. Proving (27)
is left for the exercises, and this completes the proof.
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2.3 Further directions and open questions

2.3.1 Sphere packings

The proof of Theorem 2.6 works in a very different setting: lower bounding the average
density of a random sphere packing of Rd chosen according to the hard sphere model.

2.3.2 Some open questions

Zhao has a nice survey on the area of extremal problems for regular graphs [81]. See also the
paper of Csikvári [20].

Max vs average independent set size

Theorem 2.6 implies the upper bound on R(3, k) in exactly the same way as Shearer’s bound,
as the occupancy fraction is of course a lower bound on the independence ratio. But we might
hope that it gives more – that in triangle-free graphs there is a significant gap between the
independence number and the size of a uniformly random independent set (i.e. at λ = 1 in
the hard-core model).

Question 1. Can we use Theorem 2.6 to improve the current asymptotic upper bound on
R(3, k).

We give three specific conjectures whose resolution would improve the bound.

Conjecture 2.11 ([24]). For any triangle-free graph G, we have

α(G)

|V (G)| · αG(1)
≥ 4/3 .

Conjecture 2.12 ([24]). For any triangle-free graph G of minimum degree d, we have

α(G)

|V (G)| · αG(1)
≥ 2− od(1) .

Conjecture 2.13 ([24]). For any ε > 0, there is λ small enough so that for any triangle-free
graph G we have

α(G)

|V (G)| · αG(λ)
≥ 2− ε .

Conjecture 2.11 would imply a factor 4/3 improvement on the current upper bound for
R(3, k), while Conjectures 2.12 and 2.13 would both imply a factor 2 improvement.

Matchings and perfect matchings

A classic result that can be interpreted as an extremal problem for bounded degree graphs
is Bregman’s Theorem [14]. This theorem gives an upper bound on the permanent of a 0/1
matrix with prescribed row sums.
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Recall that the permanent of an n× n matrix A, per(A), is

per(A) =
∑
σ∈Sn

n∏
i=1

Ai,σ(i) ,

where the sum is over permutations on n elements.

Theorem 2.14 (Bregman). Let A be an n × n matrix with {0, 1}-valued entries and row
sums d1, . . . dn. Then

perm(A) ≤
n∏
i=1

(di!)
1/di .

Bregman’s theorem can be stated as an upper bound on the number of perfect matchings
in a balanced bipartite graph with a given degree sequence on one side. Let pm(G) denote
the number of perfect matchings of a graph G.

Corollary 2.15. Suppose G is a bipartite graph on two parts of n/2 vertices each, with left
degrees d1, . . . dn/2, then

pm(G) ≤
n/2∏
i=1

(di!)
1/di .

One can also ask about perfect matchings in not-necessarily bipartite graphs.

Theorem 2.16 (Kahn and Lovasz). Let G be a graph on 2n vertices with vertex degrees
d1, . . . , d2n. Then

pm(G) ≤
2n∏
i=1

(di!)
1/(2di).

In the case of a d-regular graph on n vertices, this means that

pm(G) ≤ pm(Kd,d)
n/2d .

One can then ask which graph maximizes the number of total matchings, not just perfect
matchings. Let M(G) be the set of all matchings of G. Let m(G) = |M(G)| be the number
of matchings and mk(G) be the number of matchings of size k (so mn/2(G) = pm(G)). The
matching polynomial, or the partition function of the monomer-dimer model, is

Zmatch
G (λ) =

∑
M∈M(G)

λ|M | .

(Sometimes the matching polynomial is defined differently, as
∑

k≥0(−1)kλn−2kmk(G) but
these are equivalent up to scaling of the polynomial and the argument). The matching
polynomial is the independence polynomial of the line graph of G: the graph on the edges of
G with adjacency determined by incidence.

Theorem 2.17 (Davies, Jenssen, Perkins, Roberts [23]). For any d-regular graph G, and
any λ > 0,

1

|V (G)|
logZmatch

G (λ) ≤ 1

2d
logZmatch

Kd,d
(λ).
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This is the analogue of Theorem 2.2 for matchings. In particular, taking λ = 1 we have
m(G)1/n ≤ m(Kd,d)

1/2d for all d-regular graphs G.

Question 2. For a given d, λ, what is the minimum and minimizer of

1

|V (G)|
logZmatch

G (λ)

over all d-regular graphs?

See discussion in [22, 11].

Question 3. Is there a degree sequence version of Theorem 2.17, that is, a generalization of
Bregman’s theorem to the matching polynomial?

Question 4. Is there an entropy-based proof of Theorem 2.17? (Or simply an easier proof
than that in [23]).

Computational thresholds and extremal problems

In some cases, the extremal problem of maximizing or minimizing the expectation of an
observable (like the occupancy fraction) over a class of graphs can be used to identify a com-
putation threshold in an algorithmic problem about approximating coefficients of partition
functions, see [25, 17].
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3 Cluster expansion

In this lecture we focus on one very important tool from statistical physics: the cluster
expansion. At a very high level, the cluster expansion provides a way to show that a collection
of random variables is ‘close’ to independent. When it applies, you can deduce almost any
probabilistic information you can deduce for collections of independent random variables. We
will see that it is very useful for combinatorial enumeration.

3.1 Ideal gas laws

An equation of state for a gas relates the quantities that determine the state of the gas:
volume, pressure, and temperature.

The ideal gas is a gas of non-interacting particles. In the continuum we can model the
ideal gas as a Poisson process of intensity λ on a region Λ of finite volume in Rd. The partition
function of the ideal gas is given by

ZΛ(λ) =
∑
k≥0

∫
Λk

λk

k!
dx1 . . . dxk = eλ|Λ| .

The density of the ideal gas is simply λ, while the pressure is the normalized logarithm of
the partition function: pΛ(λ) = 1

|Λ| log eλ|Λ| = λ. So for the ideal gas the equation of state is

p = ρ

where p is the infinite volume pressure and ρ is the infinite volume density. In physics this is
stated with various constants (and can be derived from the equation PV = nRT which you
may be familiar with).

What happens when we deviate from the ideal gas and particles interact with each other?
The equation of state must change to account for the interaction, but we can hope that when
the density is small enough or the temperature large enough, the new equation of state will
be a small perturbation of the ideal gas law.

The idea of the cluster expansion is to measure deviations from the ideal gas law due
to interactions via an infinite series. To begin with the series is just a formal power series,
but when the activity λ is small enough it can be shown that the series is convergent. The
cluster expansion is also known as the ‘Mayer series’ or ‘Mayer expansion’ after the work of
Mayer and Mayer and Mayer and Montroll [55, 56]. Rigorous proofs of convergence came
later, e.g. [38, 65, 62].

In a discrete setting we can define an ideal gas as well, by taking, for instance, the hard-
core model on a graph of n isolated vertices (we could have defined instead a gas with a
Poisson number of particles at each site, which would lead to a different discrete ideal gas).
Then for a given fugacity λ, the density is ρ = λ

1+λ while the pressure is p = log(1 + λ).
Eliminating λ gives an equation of state:

p = log
1

1− ρ
.
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When we introduce interactions by adding edges to the empty graph, the equation of state
will change. But again we can hope that when λ is small enough and interactions are weak
enough (in terms of, say, the number of edges of the graph), the new equation of state will
be a small perturbation of the ideal law.

3.2 Cluster expansion for low density hard-core model

It will be very useful for what we do later to introduce the cluster expansion in the setting
of the multivariate hard-core model on a graph G; that is, each vertex v is assigned its own
fugacity λv.

We record some notation before we begin. Let Kk be the complete graph on k vertices
and Gk be the set of all graphs on k vertices; that is, all subgraphs of Kk. Let Ck be the set
of all connected graphs on k vertices. We also define the Ursell function (with respect to G):
for v1, . . . vk ∈ V (G),

φ(v1, . . . , vk) =
1

k!

∑
H∈Ck

∏
(i,j)∈E(H)

(−1vi=vj OR (vi,vj)∈E(G)) .

In particular if v1, . . . , vk induce a disconnected subgraph graph of G then φ(v1, . . . , vk) = 0.

We begin by writing

ZG(λ) =
∑

I∈I(G)

∏
v∈I
λv

=
∑
k≥0

1

k!

∑
v1,...,vk⊆V (G)

k∏
j=1

λvj
∏

1≤i<j≤k
(1− f(vi, vj))

where f(vi, vj) = 1 if vi = vj or (vi, vj) ∈ E(G). We can expand the last product∏
1≤i<j≤k

(1− f(vi, vj)) =
∑
H⊆Kk

∏
(i,j)∈E(H)

(−f(vi, vj))

where H is a subgraph of Kk with edges E(H). We have

ZG(λ) = 1 +
∑
k≥1

1

k!

∑
v1,...,vk⊆V (G)

k∏
j=1

λvj
∑
H∈Gk

∏
(i,j)∈E(H)

(−f(vi, vj))

= 1 +
∑
k≥1

1

k!

∑
H∈Gk

∑
v1,...,vk⊆V (G)

k∏
j=1

λvj
∏

(i,j)∈E(H)

(−f(vi, vj)) .

The expression
∑

v1,...,vk⊆V (G)

∏k
j=1 λvj

∏
(i,j)∈E(H)(−f(vi, vj)) factorizes over the connected

components H1, . . . H` of H, and so we can write

ZG(λ) = 1 +
∑
k≥1

1

k!

k∑
`=1

∑
H∈Gk

H=(H1,...,H`)

∏̀
r=1

∑
v1,...,vmr⊆V (G)

mr∏
j=1

λvj
∏

(i,j)∈E(Hr)

(−f(vi, vj))
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and summing over possible sizes of the connected components and noting that the summand
corresponding to Hr only depends on its isomorphism class as a graph,

= 1 +
∑
k≥1

k∑
`=1

1

`!

∑
m1,...,m`∑
mr=k

k!

m1! · · ·m`!

∑
H1∈Cm1 ,...,H`∈Cm`

∏̀
r=1

∑
v1,...,vmr⊆V (G)

mr∏
j=1

λvj
∏

(i,j)∈E(Hr)

(−f(vi, vj))

= 1 +
∑
`≥1

∑
k≥`

1

`!

∑
m1,...,m`∑
mr=k

k!

m1! · · ·m`!

∑
H1∈Cm1 ,...,H`∈Cm`

∏̀
r=1

∑
v1,...,vmr⊆V (G)

mr∏
j=1

λvj
∏

(i,j)∈E(Hr)

(−f(vi, vj))

= 1 +
∑
`≥1

1

`!

∑
m1,...,m`

∑
H1∈Cm1 ,...,H`∈Cm`

∏̀
r=1

1

mr!

∑
v1,...,vmr⊆V (G)

mr∏
j=1

λvj
∏

(i,j)∈E(Hr)

(−f(vi, vj))

= 1 +
∑
`≥1

1

`!

∑
m1,...,m`

∏̀
r=1

1

mr!

∑
H∈Cmr

∑
v1,...,vmr⊆V (G)

mr∏
j=1

λvj
∏

(i,j)∈E(Hr)

(−f(vi, vj))

= 1 +
∑
`≥1

1

`!

∏̀
r=1

∑
m≥1

1

m!

∑
H∈Cm

∑
v1,...,vm⊆V (G)

m∏
j=1

λvj
∏

(i,j)∈E(Hr)

(−f(vi, vj))

= 1 +
∑
`≥1

1

`!

∑
m≥1

1

m!

∑
H∈Cm

∑
v1,...,vm⊆V (G)

m∏
j=1

λvj
∏

(i,j)∈E(Hr)

(−f(vi, vj))

`

= exp

∑
m≥1

∑
v1,...vm∈V (G)

φ(v1, . . . , vm)
∏̀
j=1

λvj


or in other words,

logZG(λ) =
∑
m≥1

∑
v1,...vm∈V (G)

φ(v1, . . . , vm)
∏̀
j=1

λvj .

There was a step (the second line in the last series of equalities) that was not justified:
exchanging the order of summation over k and `. Thus the result is a formal power series for
logZG(λ) which may or may not be convergent. We consider the question of convergence in
the next section.

We can rewrite this series in terms of clusters. Given the graph G, let Γ = (v1, . . . , v`) be
an ordered tuple of vertices of G (with possible repetitions). The incompatibility graph H(Γ)
is the graph with vertex set Γ and edges between vi, vj ∈ Γ if vi = vj or if (vi, vj) ∈ E(G).
A cluster is an ordered tuple Γ whose incompatibility graph H(Γ) is connected. The size of
the cluster is the length of the tuple.

We can interpret the Ursell function in terms of the incompatibility graph H:

φ(H) =
1

|V (H)|!
∑

A⊆E(H),spanning, connected

(−1)|A| .
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Then the cluster expansion becomes

logZG(λ) =
∑

Γ

φ(H(Γ))
∏
v∈Γ

λv ,

where the sum is over all clusters Γ of G. It will be very important later, for combinatorial,
algorithmic, and probabilistic reasons, that the cluster expansion is the sum over connected
objects.

3.2.1 Examples

1. Suppose G is a single vertex v with fugacity λ. Then for each ` ≥ 1 there is a single
cluster consisting of ` copies of v. The incompatibility graph is the complete graph on `

vertices with Ursell function (−1)`+1

` (exercise: prove this!). Then the cluster expansion
is

logZG(λ) =
∑
`≥1

(−1)`+1λ
`

`

which is of course the Taylor series for log(1 + λ) around 0.

2. Suppose G is a ∆-regular, triangle-free graph on n vertices. Consider the (univariate)
hard-core model at fugacity λ. Then we can use symmetry to compute the first few
terms of the cluster expansion.

We list the clusters by size:

• There are n clusters of size 1 (each a single vertex)

• There are n clusters of size 2 consisting of two copies of a single vertex; ∆n clusters
of size 2 consisting of (ordered) edges.

• There are n clusters of size 3 consisting of 3 copies of the same vertex; 3∆n clusters
of size three with two copies of one vertex and one copy of a vertex joined to it by
an edge; 3n∆(∆− 1) clusters consisting of a ‘v’ of three vertices.

Cluster Size Count Ursell function

1 vertex 1 n 1
2 copies of 1 vertex 2 n −1/2

Ordered edge 2 ∆n −1/2
3 copies of 1 vertex 3 n 1/3

An edge with a repeated vertex 3 3∆n 1/3
A path of three vertices 3 3n∆(∆− 1) 1/6

Table 1: A list of clusters up to size 3 in a regular, triangle-free graph

Putting this together we get

1

n
logZG(λ) = λ− λ2

2
+
λ3

3
− ∆

2
λ2 +

2∆ + ∆(∆− 1)

2
λ3 + . . .
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We can also measure the deviation from the ideal gas by removing the terms corre-
sponding to clusters consisting of k copies of a single vertex:

1

n
log

ZG(λ)

(1 + λ)n
=

1

n
logZG(λ)− log(1 + λ) = −∆

2
λ2 +

2∆ + ∆(∆− 1)

2
λ3 + . . .

The expression ZG(λ)
(1+λ)n has a nice interpretation: it is the probability that when picking

a subset S ⊂ V (G) by including each vertex independently with probability λ/(1 + λ)
that the set S is an independent set. Janson’s Inequality bounds probabilities such
as this, and the first term of the expansion is exactly the term in the exponent in
Janson’s Inequality. The cluster expansion gives a way to get arbitrarily many terms
in the expansion (but of course we need to ask about convergence). A generalization of
Janson’s Inequality due to Mousset, Noever, Panagiotou, and Samotij [58] deals with
the probability of obtaining an independent set in a hypergraph when picking vertices
independently at random.

3.3 Convergence criteria

The cluster expansion will only be a useful tool if we can show that it converges (and even
more, bound the truncation error). There is a very large body of literature in mathematical
physics devoted to finding convergence criteria for the cluster expansion. This criteria seek
to balance three qualities: how sharp the bound is, how general its applicability, and how
easy it is to check and apply. In this course we will give two such criteria: one that is very
general and easy to check; the other that is sharp in a specific situation and has connections
to combinatorics.

While we are usually interested in non-negative valued fugacities λ, the convergence
criteria will often be written in terms of complex-valued λ. This is for several reasons. The
cluster expansion is a power series and so will be convergence in a (poly-)disk in the complex
plane. Showing convergence in complex domain allows one to deduce analyticity properties
of the pressure and prove absence of phase transition in the Lee–Yang sense. Finally, we will
see that evaluating the independence polynomial at negative fugacities is closely related to
the Lovász Local Lemma. For much more on this last connection see the paper of Scott and
Sokal [70].

The following result of Shearer gives the optimal zero-free (poly)disk for graphs of maxi-
mum degree ∆

Theorem 3.1 ([72]). Let G be a graph of maximum degree ∆ and suppose that for all
v ∈ V (G),

|λv| ≤ λs(∆) =
(∆− 1)∆−1

∆∆
. (28)

The the cluster expansion for logZG(λ) converges absolutely, and in particular, ZG(λ) 6= 0.

Note that λs(∆) = 1+o(1)
e∆ as ∆ → ∞, so it has the same asymptotic performance as the

Kotecký–Preiss bound. Shearer’s bound, however, is tight: by taking finite truncations of the
infinite ∆-regular tree, we can find zeroes of the independence polynomials of max degree ∆
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graphs that approach −λs(∆) from below on the negative real axis. In fact, Groeneveld [38]
(and Scott–Sokal [70]) show that the coefficients of the cluster expansion for logZG(λ) alter-
nate in sign and so the closest complex zero of ZG must lie on the negative real axis, and this
zero determines the radius of convergence of the cluster expansion.

We can derive bounds on the rate of convergence using Theorem 3.1 an idea of Barvi-
nok [5]. Define the kth order truncation of the cluster expansion as

Tk(G,λ) =
∑

Γ:|Γ|≤k

φ(H(Γ))
∏
v∈Γ

λv .

Theorem 3.2 ([72, 5]). Suppose G is a graph of maximum degree ∆ on n vertices and for
η ∈ (0, 1) suppose |λv| ≤ ηλs(∆) for all v ∈ V (G). Then

|logZG(λ)− Tk(G,λ)| ≤ nηk

1− η
.

Proof. Let Ẑ(t) = Z(tλ). Ẑ is a polynomial in t of degree at most N ≤ n and Z(t) 6= 0
for any complex t satisfying |t| ≤ η−1. We are interested in evaluating log Ẑ(1). By the
fundamental theorem of algebra we can write

Ẑ(t) =
N∏
j=1

(
1− t

rj

)

where r1, . . . , rN are the complex roots of Ẑ(t). We write

log Ẑ(t) =
N∑
j=1

log

(
1− t

rj

)

and then Taylor expand log
(

1− t
rj

)
at t = 1 around t = 0 using the fact that |1/rj | ≤ η.

This gives

|logZG(λ)− Tk(G,λ)| ≤
N∑
j=1

∞∑
i=k+1

ηi

i

≤ Nηk

1− η

≤ nηk

1− η
.

The following is a specialization of the Kotecký–Preiss condition. We will see the general
condition shortly.
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Theorem 3.3 ([51]). Consider the multivariate hard-core model on a graph G with complex-
valued fugacity vector λ. Suppose that for some b ≥ 0 and each v ∈ V (G),∑

u∈N(v)∪{v}

|λu|e1+b ≤ 1 . (29)

Then the cluster expansion for logZG(λ) converges absolutely, and moreover, for each v ∈
V (G) and each t ≥ 0, ∑

Γ�v
|Γ|≥t

∣∣∣∣∣φ(H(Γ))
∏
u∈Γ

λu

∣∣∣∣∣ ≤ e−bt . (30)

In particular, ZG(λ) 6= 0.

Here we write v � Γ if there is some u ∈ Γ so that u = v or u ∈ N(v); that is, if Γ ∪ {v}
is a cluster.

We can apply this condition to a ∆-regular graph with uniform fugacity λ, taking b = 0.
In this case, the condition is

|λ| ≤ 1

e(∆ + 1)
.

Taking b > 0 allows us to deduce strong bounds on the tail of the cluster expansion and
correlation decay properties. We will see this in Section 3.4.

Connections to Lovász Local Lemma

Shearer proved Theorem 3.1 in the context of the Lovász Local Lemma. Consider a set of
events E1, . . . , En on a probability space, and a dependency graph G on the vertex set [n]
with the property that the event Ei is independent of the events {Ej : j /∈ {i ∪N(i)}}. Let
pj = P (Ej). The Lovász Local Lemma gives conditions in terms of G and {pj} to ensure that

Pr
(⋂n

j=1Ej

)
> 0. Shearer showed a very nice connection between such a condition and the

independence polynomial of the dependency graph G.

Theorem 3.4 ([72]). Given a set of events E1, . . . , En with probabilities p1, . . . , pn and de-
pendency graph G, suppose that

ZG(−q) 6= 0

for all q ≤ p coordinatewise. Then

Pr

 n⋂
j=1

Ej

 > 0 .

Combining the two theorems gives an optimal condition for the Lovász Local Lemma.

Corollary 3.5. Given a set of events E1, . . . , En with probabilities p1, . . . , pn and dependency

graph G of maximum degree ∆. Then if pj ≤ (∆−1)∆−1

∆∆ for all j. Then Pr
(⋂n

j=1Ej

)
> 0.
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3.4 Cluster expansion and (joint) cumulants

An important application of a convergent cluster expansion is to proving strong correlation
decay properties.

Recall from Lecture 1 that we defined the truncated k-point correlation functions in
terms of the partial derivatives of a log partition function with external fields. We restate
the definition here in the setting of the multivariate hard-core model.

With λ and t both vectors of non-negative numbers indexed by V (G), let

ZG(λ, t) =
∑

I∈I(G)

∏
v∈V (G)

λve
tv .

For u1, . . . , uk ∈ V (G), the truncated k-point correlation function is

κ(u1, . . . , uk) =
∂k

∂tu1 · · · ∂tuk
logZG(λ, t)

∣∣
t=~0

.

In particular, the marginal of v is µv = ∂
∂tv

logZG(λ, t) and the covariance of spins at u and

v is κ(u, v) = µuv − µuµv = ∂2

∂tu∂tv
logZG(λ, t).

When the cluster expansion for logZG(λ) converges, we can differentiate it term-by-term
and get a convergent expansion for the truncated correlation functions. Moreover, because
the cluster expansion is a sum over connected objects, we can deduce correlation decay
properties. (See [26] or [16] for more details).

Lemma 3.6. Consider the multivariate hard-core model on G with fugacity vector λ. Sup-
pose that for some b > 0 the Kotecký–Preiss condition (29) holds. Then the model exhibits
exponential decay of correlations, i.e. for all u, v ∈ V (G),

|κ(u, v)| ≤ C(b)e−b·dist(u,v) ,

where the constant C only depends on the constant b. More generally, for any k > 0 and
u1, . . . , uk ∈ V (G), we have

|κ(u1, . . . , uk)| ≤ C(b, k)e−b·MST(u1,...,uk) ,

where MST(u1, . . . , uk) is the minimum number of edges of G in a connected subgraph con-
taining u1, . . . , uk.

Recall that joint cumulants of independent random variables are 0, and so upper bounds
on the magnitude of joint cumulants show a kind of approximate independence. It is not
difficult to convert these bounds into bounds on the total variation distance between the
joint distribution of spins at u1, . . . , uk and independent spins with marginals µu1 , . . . , µuk .

Proof. To start, we give a formula for the truncated correlation functions.

κ(u1, . . . , uk) =
∑

Γ⊇{u1,...,uk}

k∏
i=1

Yui(Γ) · φ(H(Γ))
∏
v∈Γ

λv (31)
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where Yu(Γ) is the number of occurrences of v in the cluster Γ. In particular,

µv =
∑
Γ3v

Yv(Γ)φ(H(Γ))
∏
u∈Γ

λu .

Observe that

∂k

∂tu1 · · · ∂tuk

∏
v∈Γ

λve
tv
∣∣
t=~0

=

k∏
i=1

Yui(Γ) ·
∏
v∈Γ

λv ,

and then apply this term-by-term to the cluster expansion to obtain (31). Differentiating the
power series term-by-term is justified since we are inside the radius of convergence.

Now we can apply the pinned tail estimate (30) from Theorem 3.3. Each cluster that
contains all vertices u1, . . . , uk has size at least MST(u1, . . . , uk) since its incompatibility
graph must be connected. Moreover, each additional copy of a vertex from u1, . . . , uk adds
at least 1 to the size of a cluster. Therefor, by applying (30), for each r1, . . . rk ≥ 0, we have

∑
Γ:Yuj (Γ)=rj+1,1≤j≤k

∣∣∣∣∣
k∏
i=1

Yui(Γ) · φ(H(Γ))
∏
v∈Γ

λv

∣∣∣∣∣ ≤ e−b·(MST(u1,...,uk)+
∑
j rj−1)

k∏
j=1

(1 + rj)

≤ C(b, k)e−b·MST(u1,...,uk) .

The result for κ(u, v) follows immediately since MST(u, v) = dist(u, v).

Note that in the setting of the univariate hard-core model on graphs of maximum degree
∆, Weitz’s result proves exponential decay of correlations (in fact, strong spatial mixing) for
a wider range of parameters than we obtain by cluster expansion convergence. The power
of the cluster expansion method will become evident later when we apply it to models with
very non-uniform fugacities.

3.5 Limit theorems and large deviations

A general principle is that whenever we have a convergent cluster expansion, we can, without
too much work, deduce any probabilistic information we want to know, and in particular, any
qualitative result that holds for independent random variables will likely hold in our setting.
Convergence of the cluster expansion tells us that the perturbation from independent spins
is small enough that we can control it.

We can use the cluster expansion to prove convergence of random variables. Recall that
a random variable X has a N(µ, σ2) distribution if and only if κ1(X) = µ, κ2(X) = σ2

and κk(X) = 0 for k ≥ 3. Since the Normal distribution is determined by its moments, we
can show that a sequence of random variables Xn converges to N(µ, σ2) in distribution if
κ1(Xn)→ µ, κ2(Xn)→ σ2, and κk(Xn)→ 0 for each fixed k ≥ 3.

Consider the multivariate hard-core model, and assume the Kotecký–Preiss condition
holds with some b > 0. Let X = |I| be the size of the random independent set drawn from
the model (X implicitly depends on G and we can take the size of G to∞). We can compute
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the first two cumulants of X by taking t = t above and taking derivatives of logZG(λ, t) in
t:

κ1(X) =
∑

Γ

|Γ|φ(H(Γ))
∏
v∈Γ

λv

κ2(X) =
∑

Γ

|Γ|2φ(H(Γ))
∏
v∈Γ

λv

Now let us assume that κ2(X) = var(X) = Θ(n) (which we can prove in many cases, assum-
ing, say, that λ is bounded above and below and G has an independent set of linear size).
Let X̃ = (X − EX)/

√
var(X) be the centered and scaled version of X. Then to show that

X̃ ⇒ N(0, 1) as n→∞, it is enough to show that κk(X̃)→ 0 for each k ≥ 3. Since centering
by the mean does not change higher cumulants, and since var(X) = Θ(n) it is enough to
show that κk(X/

√
n)→ 0 for k ≥ 3. We can compute

κk(X/
√
n) = n−k/2

∑
Γ

|Γ|kφ(H(Γ))
∏
v∈Γ

λv

≤ n−k/2
∑
t≥1

tk
∑
|Γ|=t

∣∣∣∣∣φ(H(Γ))
∏
v∈Γ

λv

∣∣∣∣∣
≤ n−k/2n

∑
t≥1

tke−bt

= O(n1−k/2)

= o(1) ,

where we used (30) and summed over all vertices in the second inequality.

Next we can ask about large deviations for X; that is, prove an upper bound on proba-
bilities like Pr(X ≥ (1 + ε)EX) for ε > 0 fixed. If we assume EX = Θ(n) and var(X) = Θ(n)
we would like to say that the large deviation probability is exponentially small. We will
be able to prove this using the exponential Markov inequality if we can bound the moment
generating function EetX for some t > 0. We can compute, with Zt denoting the partition
function with weights λet and Z denoting the partition function with weights λ,

logEetX = logZt − logZ

=
∑

Γ

(et|Γ| − 1)φ(H(Γ))
∏
v∈Γ

λv

and so

logEet(X−EX) =
∑

Γ

(et|Γ| − 1− t)φ(H(Γ))
∏
v∈Γ

λv

≤ t2Cn

for some absolute constant C = C(b) when the Kotecký–Preiss condition holds. Now applying
Markov’s inequality we have

Pr(X − EX ≥ εn) ≤ Ee
t(X−EX)

etεn
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≤ exp(t2Cn− tεn)

≤ exp

(
− ε2

4C
n

)
,

which is our desired exponentially small upper bound.

3.6 Polymer models and cluster expansion

An important framework in which to apply the cluster expansion is that of abstract polymer
models. This setting is not so far from that of the multivariate hard-core model on a graph,
but with an added notion of ‘size’ that makes polymer models very useful in geometric
settings. Gruber and Kunz defined ‘subset polymer models’ in which polymers were subgraphs
of a lattice like Zd [39]; Kotecky and Preiss defined a fully abstract notion of a polymer model
and gave a very convenient convergence criteria for the cluster expansion [51].

An abstract polymer model consists of a finite or infinite set of polymers C; a (complex-
valued) weight function wγ for each γ ∈ C; and a symmetric, reflexive incompatibility relation
‘�’. We write γ′ � γ if γ and γ′ are incompatible and write γ ∼ γ′ if they are compatible.

Let Ω be the collection of all sets of mutually compatible polymers from C (including the
empty set). Then the polymer model partition function is

Z =
∑
X∈Ω

∏
γ∈X

wγ . (32)

If the weights are non-negative then there is a natural probability measure on sets of
mutually compatible polymers given by

µ(X) =

∏
γ∈X wγ

Z
. (33)

Example 4. The canonical example of a polymer model is the multivariate hard-core model on
a graph G with fugacities λv, v ∈ V . We let C = V and say two vertices u, v are incompatible
if dG(u, v) ≤ 1. Sets of pairwise compatible polymers are exactly the independent sets of G,
that is X = I(G). Assigning weights functions λv to each polymer v, we see that the polymer
model partition function equals the multivariate hard-core partition function.

Example 5. Consider the ferromagnetic Ising model at inverse temperature β with external
field λ on a graph G. That is,

ZG(β, λ) =
∑

σ∈{±1}V
λN(σ,+)eβM(G,σ) .

Now let polymers be connected induced subgraphs of G, with wγ = λ−|γ|e−β|∂Eγ|, where |γ| is
the number of vertices in the polymer γ and ∂Eγ is the edge boundary of the subgraph induced
by γ. Then we have

ZG(β, λ) = λ|V |eβ|E|Z . (34)

If λ > 1 we expect to see more + spins in a typical configuration and so the polymers represent
deviations from the all + ground state.
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When the polymer weights wγ are small we might expect few polymers in a typical
configuration X, with weak correlations between the polymers. The cluster expansion gives
us a way to measure this, by expanding logZ around the empty configuration.

As the example of the polymer model representation of the Ising model shows, a polymer
will often come with a natural notion of ‘size’; in this case, the size might be the number of
vertices in the subgraph. The Kotecký–Preiss condition will provide a way to use the size of
polymers in balancing the weight functions and the number of polymers a given polymer is
incompatible with (in the hard-core setting, the activities and the degrees of vertices).

The following gives the Kotecký–Preiss condition for convergence of cluster expansion for
abstract polymer models.

Theorem 3.7 ([51]). Consider a polymer model defined by (C, w,�). Suppose that there exist
functions a : C → [0,∞), b : C : [0,∞) so that for every γ ∈ C,∑

γ′�γ

|wγ′ |ea(γ′)+b(γ′) ≤ a(γ) . (35)

Then for every γ ∈ C and all t ≥ 0,

∑
Γ�γ
b(Γ)≥t

∣∣∣∣∣∣φ(H(Γ))
∏
γ′∈Γ

wγ′

∣∣∣∣∣∣ ≤ a(γ)e−bt , (36)

where b(Γ) =
∑

γ′∈Γ b(γ
′).

Note that if C is a finite set (and so the partition function Z is finite), then (36) implies
convergence of the cluster expansion for logZ by summing over all γ ∈ C.

In many applications of Theorem 3.7 we will choose the functions a and b to incorporate
the ‘size’ of a polymer (denote it by |γ|); often we will take a(γ) = a|γ| and b(γ) = b|γ| for
some constants a, b > 0,

Example 6. Consider the Ising model polymer model as above and suppose the host graph
G has maximum degree ∆. For a polymer γ let a(γ) = |γ|, where |γ| denotes the number
of vertices of the induced subgraph that defines γ. For convenience take b(γ) = 0, but it is
straightforward to extend the analysis below to the case b(γ) = b|γ| for some b ≥ 0.

We need to show that for every γ,∑
γ′�γ

λ−|γ
′|e−β|∂Eγ

′|e|γ
′| ≤ |γ|

The number of induced subgraphs of size k containing a given vertex v in a graph of

maximum degree ∆ is at most (e∆)k−1

2 . In particular, this means that the number of γ′ of

size k that are incompatible with γ is at most |γ|(∆ + 1) (e∆)k−1

2 . Since β ≥ 0 we can bound

wγ′ ≤ λ−|γ
′|. Then we can bound∑

γ′�γ

λ−|γ
′|e−β|∂Eγ

′|e|γ
′| ≤

∑
k≥1

|γ|(∆ + 1)
(e∆)k−1

2
ekλ−k
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≤ |γ|
2

∑
k≥1

(
e2∆

λ

)k
≤ |γ|

if λ ≥ 3e2∆/2, and so the Kotecký–Preiss holds when λ is large enough as a function of ∆.
Of course the bound is not tight – there are many points at which we made rough estimates,
but we do not expect the condition to be tight itself and so we are usually ok with bounds like
this.

3.7 Example: ferromagnetic Potts model on expander graphs

Consider the q-color ferromagnetic Potts model on a graph G and suppose we want to model
defects from the all ‘red’ ground state. Define polymers to be connected induced subgraphs
of G with vertices of the subgraph colored by the remaining q − 1 non-red colors (each
different coloring of the same subgraph yields a different polymer). Two polymers γ and γ′

are incompatible if their union is connected. The weight of a polymer is

wγ = e−β|∂eγ|−β|Eb(γ)|

where ∂eγ is the set of edges from γ to γc and Eb(γ) are the bichromatic edges of γ. Then
we have

ZG(q, β) = eβ|E(G)| · Z

where ZG(q, β) is the Potts model partition function and Z is the polymer model partition
function. Notice that eβ|E(G)| is the weight of the ground state (all red configuration), and so Z
captures contributions to ZG(q, β) from deviations from the ground state (the empty polymer
configuration corresponds to the ground state – no defects). Of course we haven’t really gained
anything from this representation – the polymer model includes all the configurations that
are dominated by blue or by green, etc, while we wanted to capture deviations from the red
ground state. We will see below that we can address (in some settings) this by restricting
polymers to be ‘small’.

We will work in the setting of expander graphs (see the excellent survey [42]). The topic
of expander graphs is too big to go into here, but expander graphs are extremely useful in
mathematics, computer science, and information theory in:

• Derandomizing randomized algorithms

• Building error correcting codes

• Constructing pseudorandom graphs

Random walks mix extremely fast on expander graphs. There are many different construc-
tions of expander graphs including those based on randomness (random regular graphs for
example), group theory, number theory, and iterative constructions (the zig-zag product).

There are several different but related definitions of expander graphs: there are spectral
expanders, vertex expanders, edge expanders. We will specialize here to ∆-regular graphs to
make the connections clearer.
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For a vertex subset S, let ∂eS denote the set of edges with one endpoint in S and one
endpoint in Sc.

Definition 3.8. An n-vertex ∆-regular graph G is an α-edge-expander if for all S ⊂
V (G), |S| ≤ n/2, |∂eS| ≥ α|S|.

Definition 3.9. An n-vertex ∆-regular graph G is an α-vertex-expander if for all S ⊂
V (G), |S| ≤ n/2, |N(S)| ≥ α|S|.

Let A(G) be the adjacency matrix of an n-vertex graph G and let λ1 ≥ λ2 ≥ · · · ≥ λn be
the eigenvalues of A sorted in decreasing order. Recall that for a ∆-regular graph, λ1 = ∆.

Definition 3.10. An n-vertex ∆-regular graph G is an ε-spectral-expander if λ2(G) ≤ (1 −
ε)∆

Later we will use the notion of a bipartite α-expander.

Definition 3.11. A ∆-regular bipartite graph G with bipartition (L,R) is a bipartite α-
expander if for all S ⊂ L, |S| ≤ |L|/2, |N(S)| ≥ (1 + α)|S| (and likewise for S ⊂ R).

Returning to the low-temperature Potts model, we will make two assumptions on G:

1. G has maximum degree ∆

2. G is an α-edge-expander for some α > 0

For instance, the random ∆-regular graph satisfies these conditions whp.

For large β, we expect configurations to be dominated by one of the q-colors – we expect
to see sparse, disordered deviations from one of the q monochromatic ground states. We will
control these deviations via polymer models and the cluster expansion.

How do we ensure that our polymer model only captures small deviations from the red
ground state and not, for example, small deviations from the green ground state? And what
can we do about configurations for which there is no clearly dominant color? We will do this
in two steps. In the first we argue that we can divide the state space of the Potts model
into q disjoint parts (each associated to a dominant color) so that the complement of these
parts has exponentially small probability. We will see later that this is in fact a proof of slow
mixing for the Glauber dynamics. In the second step we will show that a polymer model
with a convergent cluster expansion can approximate each one of these q parts.

In the polymer model, we will insist that |γ| ≤ n/2 for all polymers γ. Here |γ| denotes
the number of vertices of γ. This ensures, for example, that the monochromatic green config-
uration is not represented in the red polymer model. Let Z denote the partition function of
this polymer model (note that by symmetry Z does not depend on the ground state color).

We start by understanding the separation of the q ground states. By using the expansion
properties of G we can show that q · eβ|E(G)| ·Z approximates ZG(q, β) to within e−n relative
error.

Lemma 3.12 ([43]). Let G be a n-vertex, α expander of maximum degree at most ∆. For
β ≥,

(1− e−n)q · eβ|E(G)|Z ≤ ZG(q, β) ≤ (1 + e−n)q · eβ|E(G)|Z .
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Proof. Proving this takes two steps. The first is to show that when β is large Potts configu-
rations in which no color has a majority have exponentially small relative weight. For r ∈ [q],
let Zr(β) =

∑
σ:|σ−1(r)|>n/2 e

βM(G,σ). Then for β ≥ 2 log(eq)/α, we will show that∑
r∈[q]

Zr(β) = qZr(β) ≤ ZG(q, β) ≤ (1 + e−n)qZr(β) . (37)

The lower bound is immediate since configurations can have at most one majority color. The
upper bound is a simple consequence of expansion: when there is no majority there must
be many bichromatic edges, and these are penalized heavily for large β. In particular, there
must be at least nα

2 bichromatic edges, giving a penalty to each configuration of e−nαβ/2

relative to one of the ground state configurations. There are at most qn configurations with
no majority, and taking β ≥, we have qne−nαβ/2 ≤ e−n. The approximation given by (37)
allows us to partition configurations into q + 1 subsets; one for each color plus an addition
error class (no majority) that we can neglect.

The next step is to show that the color r polymer model partition function Z (after scaling
by eβ|E(G)|) approximates Zr(β) up to an exponentially small relative error.

(1− e−n)eβ|E(G)|Z ≤ Zr(β) ≤ eβ|E(G)|Z .

Every configuration with a majority of vertices colored r is captured by the polymer model
since fewer than n/2 vertices receive a non-r color; this gives the upper bound. To prove the
lower bound we show that configurations in which all non-r connected components are of size
at most n/2 but which do not have a majority r have small total weight; this also follows
from an expansion argument: such configurations must have at least αn/2 bichromatic edges
and so their total weight is at most qne−βn/2 ≤ e−n when β ≥ 2 log(eq)/α, relative to the
empty polymer configuration.

The restriction on polymer sizes will also allow us to show that for β large enough as a
functions of q,∆, α, the Kotecký–Preiss condition is satisfied.

As above we need to bound the number of polymers of a given size and their weight. The
number of polymers of size k incompatible with γ is at most |γ|2 (∆ + 1)(q − 1)k(e∆)k−1.

The expansion condition gives us an upper bound on the weight of a polymer:

wγ ≤ e−αβ|γ|

since |∂eγ| ≥ α|γ|; here we have crucially used the upper bound on the size of γ.

With these two bounds we can verify the Kotecký–Preiss condition. Let a(γ) = b(γ) = |γ|.
For a given polymer γ,∑

γ′�γ

wγ′e
a(γ′)+b(γ′) ≤

∑
k≥1

(e∆(q − 1))k∆|γ|e−αβke2k

≤ |γ|∆
∑
k≥1

exp [k (3 + log ∆ + log(q − 1)− αβ)]

which is at most a(γ) = |γ| if β ≥ 4+2 log(q∆)
α .
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4 Independent sets in the hypercube

In this lecture we apply abstract polymer models and the cluster expansion to a combinatorial
enumeration problem: counting weighted independent sets in the hypercube.

4.1 Independent sets in the hypercube

Let Qd be the Hamming cube {0, 1}d with edges between vectors that differ in exactly one
coordinate. The Hamming cube has two maximum independent sets, each of size 2d−1: O,
the set of vectors whose coordinates sum to an odd number, and E , the set of vectors whose
coordinates sum to an even number. Since any subset of an independent set is an independent
set, we have a trivial lower bound on the total number of independent sets of the Hamming
cube: i(Qd) ≥ 2 · 22d−1 − 1.

In a classic result, Korshunov and Sapozhenko determined the asymptotics of i(Qd) [50].

Theorem 4.1 (Korshunov and Sapozhenko). As d→∞,

i(Qd) = (2 + o(1))
√
e22d−1

. (38)

Sapozhenko later gave another proof of this result [69] that introduced an influential
variant of the method of graph containers. See also Galvin’s exposition of this result [32].

Galvin [30] later extended Theorem 4.1 to the setting of weighted independent sets, the
hard-core model on Qd. He found the asymptotics of the partition function ZQd(λ) for
λ >
√

2− 1.

Theorem 4.2 (Galvin). If λ >
√

2−1,

ZQd(λ) = (2 + o(1)) · exp

[
λ

2

(
2

1 + λ

)d]
(1 + λ)2d−1

. (39)

He also found the asymptotics of the logarithm of ZQd(λ) for λ = Ω(d−1/3 log d).

Using the cluster expansion we can obtain asymptotics of ZQd(λ) for all fixed λ [44]. For
instance, if λ > 21/3 − 1,

ZQd(λ) = (2 + o(1)) · exp

[
λ

2

(
2

1 + λ

)d(
1 +

(2λ2 + λ3)d(d− 1)− 2

4(1 + λ)d

)]
(1 + λ)2d−1

. (40)

Compared to (39), the formula (40) has an extra term in the exponent. As we will see this
extra term comes from taking more terms in the cluster expansion of a polymer model and
reflects a structural change in typical independent sets from the hard-core model on Qd when
λ <
√

2−1. More generally, for each k ≥ 1, there is a structural change in typical independent
sets when λ passes 21/k − 1 and this is reflected in the asymptotic formula for ZQd(λ) having
k − 1 terms in the exponent for λ > 21/k − 1.
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Theorem 4.3 ([44]). There is a sequence of polynomials Rj(d, λ), j ∈ N, such that for any
fixed t ≥ 1 and λ > 21/t − 1,

ZQd(λ) = (2 + o(1))(1 + λ)2d−1
exp

2d−1
t−1∑
j=1

Rj(d, λ)(1 + λ)−dj


as d→∞. Moreover the coefficients of the polynomial Rj can be computed in time eO(j log j).

In particular, R1 = λ, recovering the formula in Theorem 4.2 and R2 = (2λ3+λ4)d(d−1)−2λ2

4 ,
giving (40).

4.2 Polymer model

We sketch a proof of (40) here. We emphasize that an essential part of the proof is Galvin’s
weighted generalization of Sapozhenko’s graph container lemma [30, Lemma 3.10] which we
will take as a black box. The statistical physics approach via the cluster expansion does not
replace the container argument; rather uses the container result and builds on it to obtain
detailed results. What is remarkably fortuitous is how well this container lemma works with
the cluster expansion: along with expansion properties of Qd it provides exactly what is
needed to verify the Kotecký–Preiss condition.

As in the case of unbalanced bipartite graphs, we will consider the generalized ground
state consisting of the set of all independent sets not containing an odd (respectively even)
occupied vertex. There are two such ground states (even and odd dominated) and each has

weight (1+λ)2d−1
. They overlap on the empty independent set of weight 1 (which is neglgible

asymptotically). This notion of a ground state is evident already in the formulas (38), (39),

and (40) in the factors 2 · 22d−1
and 2 · (1 + λ)2d−1

respectively. The remaining factors in the
formulas capture the contribution from typical deviations from the two ground states.

Figure 4: 2-linked components of occupied odd vertices, one of size 3 (top) and one of size 1
(bottom). Odd vertices are 2-linked if their neighborhoods overlap.
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We focus now on even-dominated independent sets, and view odd occupied vertices as
defects. To capture the behavior of these defects with a polymer model we fix X ⊆ O and
consider all independents sets I so that I ∩ O = X. The vertices in X contribute a factor
λ|X| to the weight of such I. Any even vertex in the neighborhood of X is blocked from being
in an independent set, and any even vertex not in the neighborhood of X is free to be in or
out of an independent set. This means∑

I:I∩O=X

λII| = λ|X|(1 + λ)|E|−|N(X)|

= (1 + λ)2d−1 λ|X|

(1 + λ)|N(X)| .

We set w(X) = λ|X|

(1+λ)|N(X)| ; this weight measures the penalty relative to the ground state of

the set of defect vertices X. The weight w(X) does not factorize over the vertices of X since
two vertices may or may not have overlapping neighborhoods. However, the weight does
factorize over 2-linked components of X; that is, subsets of X which are connected under
the adjacency relation defined by having overlapping neighborhoods. (Or in other words, a
2-linked component of O is a set S ⊆ O which is connected in the graph Q2

d). We can write

w(X) =
∏
γ∈X

λ|γ|

(1 + λ)|N(γ)|

where the product is over the 2-linked components of X. This is exactly what we need to
define a polymer model: a compatibility relation and a weight that factorizes over pairwise
compatible components.

For the even-dominated polymer model, the set of polymers CE is the set of all 2-linked
components γ from O with |[γ]| ≤ 2d−2 where [γ] = {y ∈ O : N(y) ⊆ N(γ)} (this notion
of the closure of γ appears in [35, 30]). Two polymers γ, γ′ are incompatible if γ ∪ γ′ is

2-linked. The weight function is wγ = λ|γ|

(1+λ)|N(γ)| . The analogous odd-dominated polymer

model features 2-linked components of even vertices. Let Ξ be the polymer model partition
function (its value is the same for the even and odd models).

4.3 Cluster expansion convergence

Proving convergence of the cluster expansion is more complicated than in the case of expander
graphs, and relies crucially on Sapozhenko’s graph containers. In particular, we will use the
following result of Galvin [30], generalizing a lemma from [69] to weighted independent sets.
Let

G(a, b) = {γ ⊆ O : γ 2-linked, |[γ]| = a, |N(γ)| = b}.

Lemma 4.4 ([30]). There exist constants C0, C1 > 0, so that for all λ ≥ C0 log d/d1/3, all
a ≤ 2d−2,

∑
γ∈G(a,b)

λ|γ|

(1 + λ)b
≤ 2d exp

(
−C1(b− a) log d

d2/3

)
.

49



Proof.

We also use three different expansion properties of Qd (collected in [30]):

Lemma 4.5. The following bipartite expansion estimates hold for Qd:

1. For S ⊂ O, |S| ≤ d/10, |N(S)| ≥ d|S| − 2|S|2.

2. For S ⊂ O, |S| ≤ d4, |N(S)| ≥ d|S|/10.

3. For S ⊂ O, |S| ≤ 2d−2, |N(S)| ≥
(

1 + 1
2
√
d

)
|S|.

For very small sets (polylogarithmic in the size of the graph) the hypercube is a very
good expander, and the expansion-based arguments we used for the Potts model will work
here too. For larger sets, however, the expansion guarantees are much too weak. However
the exponential estimate on the number of polymers containing a given vertex based from
the previous lecture is also far too pessimistic for large 2-linked subsets of Qd. The balance
between these two quantities is captured by Lemma 4.4.

4.3.1 Approximation by polymer models

Using the above ingredients, we will show that for λ sufficiently large (Ω(log d/d1/3)) the
cluster expansion for the even (or odd) dominated polymer model converges and that, after
scaling, the polymer model partition function is a very good approximation to ZQd(λ).

The following [44, Lemma 15] proves convergence of the cluster expansion for the defect
polymer model.

Lemma 4.6. Suppose λ ≥ C0 log d/d1/3. Then with a(γ) = |γ|
d3/2 and

b(γ) =


log(1 + λ)(d|γ| − 3|γ|2)− 7|γ| log d if |γ| ≤ d

10
|γ|d log(1+λ)

20 if d
10 < |γ| ≤ d

4

|γ|
d3/2 if |γ| > d4

the Kotecký–Preiss condition is satisfied.

Proof. We break up the sum
∑

γ′�γ wγ′e
a(γ′)+b(γ′) into three parts, based on the size of γ′ and

then uses expansion properties of Qd for the first two sums and the graph container lemma,
Lemma 4.4, for the third sum.

To show that ∑
γ′�γ

wγ′e
a(γ′)+b(γ′) ≤ a(γ) =

|γ|
d3/2

it is enough to show that for all v ∈ E ,∑
γ3v

wγe
a(γ)+b(γ) ≤ d−7/2 .
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We break up the sum into three parts according to the size of γ; we will show that each sum
is at most 1

3d
−7/2.

First consider |γ| ≤ d/10. By counting rooted, connected induced subgraphs in a bounded
degree graph, the number of polymers of size k containing v is at most exp(3k log d); by
Lemma 4.5, for |γ| ≤ d/10, |N(γ)| ≥ d|S| − 2|S|2. This gives

∑
γ3v

|γ|≤d/10

wγe
a(γ)+b(γ) ≤

d/10∑
k=1

e3k log dekd
−3/2

elog(1+λ)(dk−3k2)−7k log d λk

(1 + λ)dk−2k2

≤
∑
k≥1

exp
(

3k log d+ k log λ+ kd−3/2 − k2 log(1 + λ)− 7k log d
)

≤
∑
k≥1

exp
(
−4k log d+ kd−3/2

)
which is at most 1

3d
−7/2 for d large enough.

Next consider d/10 < |γ| ≤ d4. In this case |N(γ)| ≥ d|γ|/10, and so

∑
γ3v

d/10<|γ|≤d4

wγe
a(γ)+b(γ) ≤

d4∑
k=d/10

e3k log dekd
−3/2

ed log(1+λ)k/20 λk

(1 + λ)dk/10

=
d4∑

k=d/10

exp
(
k
(
d−3/2 + log λ+ 3 log d− d log(1 + λ)/20

))
which is at most 1

3d
−7/2 for d large enough and λ ≥ C log d/d.

Finally consider |γ| > d4. Here we have |N(γ)| ≥ |γ|(1 + 1/(2
√
d)). We bound

∑
γ3v
|γ|>d4

wγe
a(γ)+b(γ) =

∑
d4<a≤2d−2

(1+1/(2
√
d))a≤b≤2d−1

∑
γ3v

|[γ]|=a,|N(γ)|=b

λ|γ|

(1 + λ)b
e2|γ|d−3/2

≤
∑

d4<a≤2d−2

(1+1/(2
√
d))a≤b≤2d−1

e2ad−3/2
∑
γ3v

|[γ]|=a,|N(γ)|=b

λ|γ|

(1 + λ)b

≤
∑
a>d4

b≥(1+1/(2
√
d))a

e2ad−3/2
d exp

(
−C1(b− a) log d

d2/3

)
,

where the last inequality comes from applying Lemma 4.4. In the sum, we have (b − a) ≥
a/(2
√
d) and a > d4, and so

2a

d3/2
+ log d− C1(b− a) log d

d2/3
≤ −ad−7/6
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for large enough d, and so∑
γ3v

d4<|γ|≤2d−2

wγe
a(γ)+b(γ) ≤

∑
d4<a≤2d−2

(1+1/(2
√
d))a≤b≤2d−1

exp(−ad−7/6)

≤ 2d
∑
a>d4

exp(−ad−7/6)

≤ 1

3d7/2

for d large enough.

The following lemma [44, Lemma 14] shows that 2(1 +λ)2d−1
Ξ is a very good approxima-

tion to the full partition function.

Lemma 4.7. For λ = Ω(log d · d−1/3),∣∣∣logZQd(λ)− log
(

2(1 + λ)2d−1
Ξ
)∣∣∣ = O

(
e−2d/d4

)
.

The proof of Lemma 4.7 combines ideas from the slow-mixing result of Galvin and
Tetali [35] with large deviation estimates from the polymer model itself.

We state the large deviation result here. The proof of this lemma uses the techniques
outlined in the previous lecture on the cluster expansion.

Lemma 4.8. Let X be a random configuration drawn from the defect polymer distribution.
Let ‖X‖ =

∑
γ∈X |γ|. Then

Pr[‖X‖ > 2d/d2] ≤ exp
(
−2d/d4

)
. (41)

Now we turn to the proof of Lemma 4.7.

Proof of Lemma 4.7. We say an independent set I is captured by the odd-dominated polymer
model if every 2-linked component γ of E∩I is small; that is, |[γ]| ≤ 2d−2 (and likewise for the

even-dominated polymer model). We can show that 2(1 + λ)2d−1
Ξ is a good approximation

to ZQd by showing that the weight of independent sets a) not captured by either polymer
model and b) captured by both polymer models is small.

To address a), note that every independent set is captured by either the odd or the
even polymer model. Suppose for the sake of contradiction that there exists I ∈ I(Qd) that
contains a 2-linked set γ ⊆ O with |[γ]| > 2d−2 and a 2-linked set γ′ ⊆ E with |[γ′]| > 2d−2. We
have |N(γ)| = |N([γ])| > 2d−2 (since Qd contains a perfect matching). Then N(γ) ∩ [γ′] 6= ∅
and so γ ∩N(γ′) = γ ∩N([γ′]) 6= ∅, contradicting the fact that I is an independent set.

It remains to bound the contribution from independent sets that are captured twice. To
do that it is enough to show that with probability 1 − O

(
exp(−2d/d4)

)
the number of odd

occupied vertices in an independent set formed from the odd-dominated polymer model is
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greater than the number of even occupied vertices. This follows from Lemma 4.8: with
probability 1 − O

(
exp(−2d/d4)

)
the number of even occupied vertices is at most 2d/d2;

conditioned on this event, the number of odd occupied vertices stochastically dominates a
Bin(2d−1 − 2d/d, λ/(1 + λ)) random variable. This random variable is greater than 2d/d2

with probability 1−O
(
exp(−2d/d4)

)
by a Chernoff bound.

All together this gives(
1−O

(
exp(−2d/d4)

))
2(1 + λ)2d−1

Ξ ≤ Z(λ) ≤ 2(1 + λ)2d−1
Ξ ,

and so

log[2(1 + λ)2d−1
Ξ]−O(exp(−2d/d4)) ≤ logZ(λ) ≤ log[2(1 + λ)2d−1

Ξ] ,

which proves Lemma 4.7.

4.4 Consequences

As a consequence of Lemmas 4.6 and 4.7, we obtain a convergent series approximation for
logZQd with bounds on the truncation error. The larger λ is the fewer terms of the series
needed to get the asymptotics of Ξ (and thus ZQd). In fact, the number of terms of the cluster
expansion needed corresponds exactly to the size of the largest defect polymers typically seen
in a random independent set.

In particular, if λ > 21/t − 1, then we have the asymptotic formula

ZQd(λ) = (2 + o(1)) exp

[
t−1∑
k=1

Lk

]
(1 + λ)2d−1

,

where Lk is the sum of cluster expansion terms over clusters of size k. Moreover, when
λ > 21/t− 1 then whp the largest 2-linked occupied component on the side of the bipartition
with fewer occupied vertices is of size at most t− 1.

In the proof of Lemma 4.7 we implicitly used the following. Consider the distribution νλ
on I(Qd) defined as follows:

1. With probability 1/2 each choose even or odd as the dominant side of the bipartition.

2. Choose a polymer configuration X from the odd (even) dominated polymer model.
Place each of the vertices of this configuration in the independent set.

3. From the vertices of O (E) unblocked by X add each to the independent set indepen-
dently with probability λ/(1 + λ).

Lemma 4.7 immediately implies that νλ is very close in total variation distance to µλ.

Corollary 4.9. For λ ≥ C0 log d/d1/3,

‖µλ − νλ‖TV = O
(

exp(−2d/d4)
)
.

(It is not hard to see that the two distributions are not exactly equal - the empty inde-
pendent set gets twice the weight in νλ as in µλ).
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4.5 Further directions for Qd and beyond

One area in which combinatorial ideas can be applied to statistical physics questions is
in identifying or bounding the values of parameters at which phase transitions occur. In
particular, the location of the phase transition for the hard-core model on Zd or Qd is an
open problem (and a subtle problem: Brightwell, Häggström, and Winkler [15] show that on
some infinite graphs there may be more than one phase transition in the hard-core model).

See [33, 61, 35] for the best current lower bounds on phase coexistence.

See [4] for additional applications of the cluster expansion to combinatorial enumeration.
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5 The algorithmic perspective

In this lecture we look at the algorithmic problems of approximating partition functions and
sampling from Gibbs measures.

5.1 Basics of approximate counting and sampling

An ε-relative approximation to a non-negative real number Z is a number Ẑ so that

e−εẐ ≤ Z ≤ eεẐ .

We could have also used (1− ε) and (1 + ε) but eε is slightly more convenient.

There are two standard notions of efficient approximate counting algorithms: one deter-
ministic and one randomized.

A fully polynomial-time approximation scheme (FPTAS) for computing a partition func-
tion ZG is an algorithm that given ε > 0 and G outputs an ε-relative approximation to ZG
and runs in time polynomial in n = |V (G)| and 1/ε.

A fully polynomial-time randomized approximation scheme (FPRAS) for computing a
partition function ZG is a randomized algorithm that given ε > 0 and G outputs, with
probability at least 2/3, an ε-relative approximation to ZG and runs in time polynomial in
n = |V (G)| and 1/ε.

The choice of 2/3 is arbitrary – any probability in (1/2, 1) would suffice. By repeating the
algorithm O(log(1/δ)) times and taking a median one can boost the probability of success to
1− δ.

The notion of an efficient approximate sampling algorithm is not quite standard. We give
one definition here.

A polynomial-time sampling scheme for a Gibbs measure µG on spin configurations Σ ⊆
ΩV is a randomized algorithm that given G and ε > 0 outputs a configuration σ ∈ Σ
with distribution µ̂ so that ‖µ̂ − µG‖TV . The algorithm should run in time polynomial in
n = |V (G)| and 1/ε.

The other commonly used notion requires the sampling algorithm to run in time polyno-
mial in n and log(1/ε).

In many situations randomized efficient approximate counting (FPRAS) and efficient
approximate sampling are equivalent. The precise setting is that of self-reducible problems [48,
73]; in the exercises we will show implications in the case of the hard-core model on a family
of graphs closed under taking subgraphs (e.g. all graphs, all graphs of maximum degree ∆,
all triangle-free graphs etc.).

5.2 Major results and open questions in approximate counting and sam-
pling

We next give a brief survey of some of the major results and major open problems in the field
of approximate counting. Very broadly, statistical physics spin models (with exceptions!) fit
into one of three categories:
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• Problems for which there is an efficient algorithm for all graphs (ferromagnetic Ising
and monomer-dimer models). Here the main open questions are whether there are
deterministic algorithms for all graphs. Intriguingly, the two models in this category
are exactly the two models for which there are very strong zero-freeness results (the
Lee-Yang and Heilmann-Lieb theorems). Is there a rigorous connection between these
phenomena?

• Problems which are hard NP-hard on general graphs but for which there are efficient
algorithms in the weak interaction regime on, say, bounded-degree graphs (hard-core
model is one example). Here a main question is to find computational thresholds sep-
arating parameter regimes of tractability and intractability on some classes of graphs.
For the hard-core model this has been done by Weitz and Sly, while for other models
the location of the threshold is still open.

• Problems for which neither efficient algorithms nor hardness of approximation is known
either. The class of problems defined by #BIS (below) lies in this category, and the
major open problem is to determine its complexity.

5.2.1 Positive results

The following are some of the landmark results in the field.

Theorem 5.1 (Jerrum-Sinclair [46]). There is an FPRAS for the partition function of the
ferromagnetic Ising model for all inverse temperatures β ≥ 0 and consistent, non-uniform
external fields.

Consistent external fields mean that all external fields point in the same direction (either
favoring + or favoring −).

Theorem 5.2 (Jerrum-Sinclair-Vigoda [47]). There is an FPRAS for approximating the
permanent of an n × n matrix with non-negative entries. Thus there is an FPRAS for
approximating the number of perfect matchings in a bipartite graph.

Theorem 5.3 (Jerrum-Sinclair [45]). For every λ > 0 there is an FPRAS for approximating
the monomer-dimer partition function on all graphs.

While we can sample weighted matchings in a general graph or perfect matchings in a
bipartite graph, it is not known how to sample perfect matchings from a general graph.

Question 5. Is there an FPRAS for approximating the number of perfect matchings in a
general graph?

An important theme in the study of computational complexity is the power of randomness.
In the setting of approximate counting and sampling there are several important cases in
which randomized approximation algorithms are known but not deterministic approximation
algorithms

Question 6. Is there an FPTAS (deterministic approximation algorithm) for the number of
perfect matchings of a bipartite graph or the permanent of a non-negative matrix?
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5.2.2 Computational thresholds

For some problems we know an FPRAS for some range of parameters, know NP-hardness
for other ranges of parameters, but do not know the precise computational threshold. The
canonical example is the hard-core model on the class of graphs of maximum degree ∆.

Theorem 5.4 (Weitz, Sly).

1. If λ < λc(∆) = (∆−1)∆−1

(∆−2)∆ , then there is an FPTAS and a polynomial-time sampling

scheme for the hard-core model on graphs of maximum degree ∆ [79].

2. If λ > λc(∆), then there is no FPRAS for the hard-core model on graphs of maximum
degree ∆ unless NP=RP [74, 75, 29].

For other problems there is a range of tractable parameters and a range of intractable
parameters but we do not know the precise computational threshold. One example is the
problem of counting and sampling proper q-colorings of a graph.

Theorem 5.5 (Vigoda [78]). For q > 11
6 ∆ there is an FPRAS for counting the number of

q-colorings of a graph of maximum degree ∆. In particular the Glauber dynamics mix rapidly
for these parameters.

See also the small recent improvement in [18].

Question 7. Is there an FPTAS for counting the number of q-colorings in graphs of maximum
degree ∆ when q ≥ ∆ + 1?

5.2.3 Intermediate complexity: #BIS

Sampling independent sets (uniformly or from the hard-core model) is hard in general: in
fact, finding large independent sets in graph is already NP-hard. What if we restrict to a class
of graphs for which the search problem is tractable? In particular, there is a polynomial-time
algorithm to find a maximum independent set in a bipartite graph. Can we in fact sample
(or approximately count) independent sets in bipartite graphs?

The problem of counting the number of independent sets in a bipartite graph is known
as #BIS (counting bipartite independent sets). Exact counting is #P-hard but one can ask
about approximate counting.

Question 8. Is there an FPRAS for approximating the number of independent sets in a
bipartite graph? Or is the problem NP-hard?

Dyer, Goldberg, Greenhill, and Jerrum [27] showed that many other important approx-
imate counting and sampling problems with unknown complexity are equivalent to or as
hard as #BIS. These include the ferromagnetic Potts model (q ≥ 3), counting q-colorings in
bipartite graphs, counting stable matchings.
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5.3 MCMC approach

Perhaps the most widely used approach to approximate counting and sampling is Markov
Chain Monte Carlo (MCMC). The basic idea is to find a Markov chain with the following
properties:

• The unique stationary distribution of the chain is the target distribution µ.

• A single step of the chain is easy to implement.

• The chain converges rapidly to the stationary distribution.

Then the sampling algorithm is to start at an arbitrary state, run the chain for long enough,
and output the final configuration. Using random sampling we can then approximate a
partition function. The MCMC method was first developed in [57], to sample from the
2-dimensional hard disk model (for some history on its developments see [64]).

For background on Markov chains see [53]. We recall a few important definitions here.

Definition 5.6. A discrete-time, discrete space Markov chain on a finite or countable set Σ
is a stochastic process X0, X1, X2, . . . that satisfies the Markov property: the distribution of
Xt conditioned on X0, . . . , Xt−1 equals the distribution of Xt conditioned on Xt−1.

This means we can describe a Markov chain by the distribution ν0 of the initial state X0

and the transition matrix P (·, ·), defined by P (x, y) = P (Xn+1 = y|Xn = x). We can also
define the t-step transition probabilities: P t(x, y) = P (Xn+t = y|Xn = x)

Definition 5.7. A Markov chain is irreducible if for every x, y ∈ Σ there exists t so that
P t(x, y) > 0. A Markov chain is aperiodic if for every x ∈ Σ the gcd of the set {t ≥ 1 :
P t(x, x) > 0} is 1.

For example, the simple random walk on a connected graph is irreducible, but on a
disconnected graph it is not. The simple random walk on a bipartite graph is not aperiodic.
We can make any periodic Markov chain aperiodic by making it ‘lazy’: at each step, with
probability 1/2 (or some other positive constant) stay in the current state and with probability
1/2 follow the law of the Markov chain.

Definition 5.8. A probability distribution π on Σ is a stationary distribution for the Markov
chain defined by P if for all x ∈ Σ,

π(X) =
∑
y∈Σ

π(y)P (y, x) .

In particular, if π is a stationary distribution and X0 is distributed according to π0 = π
then Xk is distributed according to π for all k ≥ 0.

How can we find a stationary distribution? There is a useful technique for a special class
of Markov chains. A Markov chain P is reversible with respect to π if for all x, y ∈ Σ,

π(x)P (x, y) = π(y)P (y, x) . (42)
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This is called the detailed balance equation.

If P is reversible with respect to π then π is a stationary distribution for P . While most
(or perhaps all) the Markov chains we will study in this class are reversible,

A fundamental result on Markov chains states that if a Markov chain is irreducible and
aperiodic then there exists a unique probability distribution µ on Σ so that πn → π as n→∞,
where πn is the distribution of Xn.

5.3.1 Markov chains for spin models

We now specialize to Markov chains for spin models on graphs (for a short introduction to
the topic see [63]).

Here the state space will be the set of all possible configurations, ΩV , or in the case of
models with hard constraints, the set of all allowed configurations (I(G) in the case of the
hard-core model on a graph G).

Our goal will be to find a Markov chain on ΩV with stationary distribution µG, the Gibbs
measure. There are many such Markov chains but for now we will be most interested in local
Markov chains: Markov chains in which at most one (or at most a bounded number of) spins
are changed in each step. This is for two reasons: such Markov chains may in some sense
capture the way a physical system evolves over time and these Markov chains are often easy
to implement computationally.

The Glauber dynamics

Given a configuration Xt ∈ ΩV we obtain Xt+1 as follows:

1. Pick v ∈ V uniformly at random.

2. Resample the spin at v from the Gibbs measure µG conditioned on the spins at the
other vertices.

If µG is a Gibbs measure with pairwise interactions across edges, the second step is
equivalent to resampling conditioned on the spins of the neighbors of v.

Exercise 5. 1. Show that the Glauber dynamics are reversible with respect to the Gibbs
measure µG.

2. Show that the Glauber dynamics are irreducible and aperiodic. (Assume that H(σ) ∈
[0,∞) for all σ, or prove for the hard-core model).

Exercise 6. Let Σq(G) be the set of all proper q-colorings of G and suppose |Σq| > 0. Let
µG,q denote the uniform distribution on Σq(G).

1. Give an example of graph G so that for some q ≥ 2, Σq(G) is disconnected under moves
that change the color of one vertex at a time.

2. Give conditions in terms of q and the maximum degree of ∆ to ensure that Σq(G) is
connected under single spin updates (changing the color of one vertex at a time).
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3. Describe precisely a single spin update Markov chain for sampling from µG,q (i.e.
Glauber dynamics).

5.3.2 Mixing times

Markov chains are widely used to sample from probability distributions on large sets Σ. If we
want to sample from µG by running a Markov chain X1, X2, . . . with stationary distribution
µG, an important question is how long we need to run the chain to get an approximately
correct sample from µG.

To answer this we need a good measure of ‘approximately correct’.

Definition 5.9. Let µ1 and µ2 be two probability measures on the same sample space Σ with
the same sigma-field F . Then the total variation distance between µ1 and µ2 is

‖µ1 − µ2‖TV = sup
A∈F
|µ1(A)− µ2(A)| .

For a discrete probability space, we have

‖µ1 − µ2‖TV =
1

2

∑
σ∈Σ

|µ1(σ)− µ2(σ)|

=
∑

A⊆Σ:µ1(A)>µ2(A)

µ1(A)− µ2(A) .

With this definition we can define the Mixing time of a Markov chain.

Definition 5.10. The ε-mixing time τmix(ε) of a Markov chain with stationary distribution
π on Σ is

sup
π0∈P(Σ)

min{t ≥ 0 : ‖πt − π‖TV < ε},

where πt is the distribution of Xt given that X0 has distribution π0.

We write τmix for τmix(1/4). This is because for any irreducible, aperiodic Markov chain
with stationary distribution π, there are constants C > 0 and α ∈ (0, 1) so that

sup
π0

‖πt − π‖TV ≤ Cαt .

This means that τmix(ε) = O(log(ε−1)) · τmix.

For a Gibbs measure µG on a graph G on n vertices we say a Markov chain is fast-mixing
or mixes rapidly if τmix is bounded by a polynomial in n; that is, poly-logarithmic in the size
of the state space ΩV . We say the Markov chain is slow mixing or torpidly mixing if τmix is
superpolynomial in n (often exponential in some power of n).

Keep in mind that the size of the state space of a spin model on G is exponentially large in
n. So in the context of random walks on graphs, a random walk that mixes in time O(log n)
is fast mixing while a random walk with mixing time Ω(nc) for some c > 0 is slow mixing.
Random walks on expander graphs are fast mixing, while a random walk on a cycle, for
instance, is slow mixing.
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5.4 The method of correlation decay

In this section we describe an approach to approximate counting due to Weitz [79]. It is
known as ‘the method of correlation decay’ and it involves constructing a computational tree
to compute the marginal of a single vertex. If the computational tree exhibits strong spatial
mixing then approximating the marginal can be done efficiently. Then by self-reducibility
efficient computation of marginals leads to an efficient approximate counting algorithm for
the partition function.

We present the method in its original context (the hard-core model on bounded degree
graphs) but it has since been extended to other graphs and other spin systems.

Weitz’s main result is both an algorithmic result and a probabilistic result about correla-
tion decay and uniqueness.

Theorem 5.11 (Weitz [79]). There is an FPTAS and polynomial-time sampling scheme for
the hard-core partition function ZG(λ) on graphs of maximum degree ∆ when

λ < λc(∆) =
(∆− 1)∆−1

(∆− 2)∆
. (43)

Moreover, the hard-core model on any infinite graph of maximum degree ∆ exhibits strong
spatial mixing and uniqueness when λ < λc(∆) = (1 + o∆(1)) e∆ .

The value λc(∆) marks a phase transition on an infinite graph: it is the uniqueness
threshold for the hard-core model on the infinite ∆-regular tree. Theorem 5.11 and the
complementary Theorem ?? below connect the statistical physics phase transition on the
tree to a computational threshold.

Recall that we can write ZG(λ) as the inverse of a product of marginals of subgraphs of G.
This implies that if we have an FPTAS for µv for a given λ and class of graphs closed under
taking subgraphs (such as max degree ∆ graphs) then we have an FPTAS for ZG(λ). Then by
the reduction of approximate sampling to approximate counting we have a polynomial-time
sampling scheme as well.

5.4.1 The self-avoiding walk tree

Given a graph G and a vertex v ∈ V (G), Weitz (following Godsil’s construction for match-
ings [37]) constructs a tree TSAW (G, v) with root r so that for a given fugacity λ,

µG,v = µTSAW (G,v),r .

That is, the marginal of v in G equals the marginal of r in TSAW (G, v). This is somewhat
promising since marginals in trees can be computed exactly in polynomial time, but in general
TSAW (G, v) will be of exponential size in the size of G.

To construct TSAW (G, v) first order the vertices of G with v1, . . . vn (and assume v = v1).
This puts an order on edges incident to a given vertex w, with the ‘smaller’ edge being the
edge with the vertex appearing first in the order.
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We will first construct TSAW (G, v) as a tree with a boundary condition imposed on leafs;
in the hard-core model, however, we can implement boundary conditions by pruning the tree
(if a vertex is specified out of the independent set, remove it from the graph; if a vertex is
specified in the independent set, remove it and its neighbors).

The tree is the tree of self-avoiding walks of G starting at v, with vertices added for steps
that close a cycle. These vertices will be specified in or out of the independent set based on
the ordering of edges. In particular, if a path closes a cycle, the vertex in the tree closing the
cycle is set to be in if the edge closing the cycle is larger than the edge starting the cycle and
set to be out otherwise.

Theorem 5.12. For any G, any v ∈ V (G), and any λ ≥ 0,

µG,v = µTSAW (G,v),r .

Moreover if G has maximum degree ∆ then TSAW (G, v) has maximum degree ∆. The depth
of TSAW (G, v) is at most |V (G)|.

Proof. It will be convenient to work with ratios of marginal instead of marginals directly. Let

RG,v =
µG,v

1− µG,v
.

On a tree T with root r with degree d, we have a nice recursion for RT,r:

RT,r = λ
d∏
i=1

1

1 +RTi,ui

where Ti is the subtree rooted at the ith neighbor ui of r. Applying this identity recursively
gives a procedure to compute the marginal of the root of any finite tree (with the base case
that Rv,v = λ).

Now consider a general graph G with specified vertex v whose neighbors are u1, . . . , ud.
Let G′ be the graph G where v is replaced by d copies v1, . . . , vd, with each vi joined only to
ui. We also set the activity of vi to be λ1/d. Then we have that RG,v is exactly the ratio of
the probability that all of the vi’s are occupied to the probability that none of the vi’s are
occupied in G′.

Let τi be the boundary condition that uj is occupied for j < i and unoccupied for j > i.
Then by the above we have that

RG,v =

d∏
i=1

RτiG′,vi

where we have included the boundary conditions in the notation.

Since vi is only connected to ui, we have

RτiG′,vi =
λ1/d

1 +RτiG′\vi,ui
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and so

RG,v = λ
d∏
i=1

1

1 +R
.

As in the tree, this defines a recursive procedure for computing RG,v; the recursion terminates
since the number of unfixed vertices (by boundary conditions) decreases by 1 at each step.

In fact, the recursion for RG,v is exactly the same recursion as for RTSAW (G,v),r.

Corollary 5.13. If the infinite ∆-regular tree T∆ exhibits strong spatial mixing then any
infinite graph (or infinite family of finite graphs) of maximum degree ∆ exhibits strong spatial
mixing.

5.4.2 Uniqueness threshold of the hard-core model on the ∆-regular tree

Lemma 5.14. The uniqueness threshold (and the threshold for weak spatial mixing) of the

hard-core model on T∆ is λc(∆) = (∆−1)∆−1

(∆−2)∆ .

Proof. The hard-core model on the tree exhibits a kind of monotonicity. The two extreme
boundary conditions are the all occupied and the all unoccupied boundary conditions at
depth k; if k is even the the all occupied boundary conditions favor the root being occupied,
and if k is odd the all occupied boundary conditions favor the root being unoccupied. Recall
that we can implement hard-core boundary conditions by pruning the tree. Therefore to
check for weak spatial mixing we can check whether the occupation probability of the root
in the depth-k pruning of T∆ converges as k →∞ or not.

Consider iterating the recursion F (R) = λ
(

1
1+R

)∆−1
twice to get

G(R) = λ

 1

1 + λ
(

1
1+R

)∆−1


∆−1

.

We want to understand if G(R) has a unique fixed point or not. Some calculus will tell
us that if λ < λc(∆) then |G′(R)| < 1 for all R > 0 and so G has a unique fixed point. On
the other hand, when λ > λc(∆) there are multiple fixed points, as we can see in Figure 5.

The three fixed points can be interpreted as follows. For any ∆, λ there is a unique fixed
point F (R) = R. This corresponds to the unique translation-invariant infinite volume Gibbs
measure on T∆ (translation-invariant in the sense that the occupation probability of every
vertex is equal).

On the other hand, when λ > λc(∆), the two additional fixed points correspond to the two
extremal semi-translation-invariant infinite volume Gibbs measures (occupation probabilities
depend on the parity of the depth of the vertex). One can be obtained by the limit of all even
occupied boundary conditions and the other as the limit of the all odd occupied boundary
conditions.
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Figure 5: The function G(R) for ∆ = 4, λ = 3.0

The heart of Weitz’s argument is that weak spatial mixing implies strong spatial mixing
on the tree. In particular, subtrees of T∆ can be obtained by imposing boundary conditions,
strong spatial mixing holds for the self-avoiding walk tree when λ < λc(∆).

5.5 Series truncation algorithms

Another approach to approximate counting is the polynomial interpolation method of Barvi-
nok [5, 6, 7] which relies on a complex zero-free region of a univariate partition function.
This is closely related to an algorithmic version of the cluster expansion which relies on some
convergence criterion being satisfied. The two approaches are of course closely linked. The
cluster expansion can be used to prove the existence of a zero-free region. Moreover, the clus-
ter expansion is the multivariate Taylor series of the log partition function and so specializing
to equal activities the two series are identical. Nonetheless, it is worthwhile considering both
approaches separately since they have different conditions and apply in different situations.

A simple but powerful observation of Barvinok is that if a polynomial p(x) of degree n has
no zeros in the disk of radius R around 0 in the complex plane, then truncating the Taylor
series for log p(x) around 0 after O(log(n/ε)) terms gives a good approximation to log p(x) if
x is in the interior of the disk.

Lemma 5.15. Let p(x) be a polynomial of degree n and suppose that p(x) 6= 0 when |x| < R
for some R > 0. Define

Tm(x) = log p(0) +

m∑
j=1

(log p)(j)(0)

j!
xj

be the mth order Taylor series for log p(x) around 0. Then if |x| ≤ (1− η)R for some η > 0,

|log p(x)− Tm(x)| ≤ n(1− η)m

(m+ 1)η
.

Proof. Let z1, . . . , zn ∈ C denote the roots of the polynomial p(x) (with multiplicity). We
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can write

p(x) = p(0)

n∏
j=1

(
1− x

zj

)
or

log p(x) = log p(0) +

n∑
j=1

log

(
1− x

zj

)
.

Now since
∣∣∣ xzj ∣∣∣ ≤ 1− η, the Taylor series for log

(
1− x

zj

)
is absolutely convergent and∣∣∣∣∣log

(
1− x

zj

)
−

m∑
i=1

(−1)i(x/zj)
i

i

∣∣∣∣∣ ≤
∞∑

i=m+1

(1− η)i

i

≤ 1

m+ 1

∞∑
i=m+1

(1− η)i

=
(1− η)m+1

(m+ 1)η
.

Summing the error over all the n roots proves the lemma.

In particular, Lemma 5.15 tells us that exp(Tm(x)) is an ε-relative approximation to p(x)
when m ≥ C(η) log(n/ε) and p and x satisfy the conditions of the theorem.

To implement this as an algorithm, we need to compute the coefficients bk of the power
series Tm(x) =

∑m
k=0 bkx

k. In specific cases, such as the hard-core partition function, the
cluster expansion gives us a formula for these coefficients: bk =

∑
|Γ|=k φ(H(Γ)), where the

sum is over all clusters of G of size k.

For a generic polynomial p we do not have such a formula, but we can still compute
the coefficients inductively. With p(x) =

∑n
k=0 akx

k, we can compute bk by solving a linear
system involving b0, . . . , bk and a0, . . . , ak (exercise!). This reduces the problem to compute
the first O(log(n/ε)) coefficients of p. We will see some examples of this below.

5.5.1 Application: the ferromagnetic Ising model

Consider the ferromagnetic Ising model partition function with external field λ:

ZG(β, λ) =
∑

σ∈{±1}V (G)

eβM(G,σ)λ|{v:σv=+1}| .

Viewed as a function of λ, ZG(β, λ) is a polynomial of degree n (with coefficients that depend
on β and the graph structure). The Lee–Yang Theorem tells us that all of the zeros of this
polynomial lie on the unit circle |λ| = 1 (in the ferromagnetic case β ≥ 0). Now fix λ with
|λ| = 1 − η < 1. Then when m ≥ C(η) log(n/ε), exp(Tm) is an ε-relative approximation to
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ZG(β, λ). We just need to compute the coefficients ak of ZG(β, λ) to compute the coefficients
of the Taylor series Tm. We have

ak =
∑
σ∈(Vk)

eβM(G,σ) ,

and so we can compute this in time O(nk) by summing over all sets of k vertices of G. This
does not give a polynomial-time algorithm, since we need to consider k = Ω(log(n/ε)); rather
it gives a quasi-polyniomial-time algorithm running in time nO(logn) for fixed ε. Several
applications of Barvinok’s polynomial interpolation method have running times of this form.
In the case of the Ising model (and other spin models on graphs), when G is of maximum
degree ∆ the running time for computing ak can be improved to nO(log ∆) which is polynomial
time when ∆ is fixed.

5.6 Algorithms at low temperatures

All of the algorithmic approaches to approximate counting and sampling we have seen so far
work at high temperatures: when interactions (or densities) are weak enough. Each of the
algorithmic techniques has a corresponding technique for proving uniqueness of infinite Gibbs
measures, and so phase transitions present an inherent barrier to these methods. What can
we do at low temperatures? Or in the presence of phase coexistence?

Polymer models will give us one way to design low temperature algorithms, by allowing
us to switch from a low-temperature (or high-density) spin model to a high-temperature
(weakly interacting) polymer model to which we can apply several different algorithmic tech-
niques. This type of low temperature algorithm first appeared in [41] in the form of efficient
approximate counting and sampling algorithms for the large β Potts model and large λ hard-
core models on Zd. These algorithms used Pirogov-Sinai theory, a class of contour models
which are more complex than polymer models. We will instead start by describing algorithms
from [43, 16] which use polymer models.

5.6.1 Making the cluster expansion algorithmic

Using the Kotecký–Preiss condition we can truncate the cluster expansion to get a good
approximation of logZ. In particular, if the condition holds for some b > 0, then with

Tm =
∑
|Γ|≤m

φ(H(Γ))
∏
v∈Γ

λv

we have

|logZG(λ)− Tm| ≤ ne−bm .

This tells us that exp(Tm) is an ε-relative approximation to ZG(λ) when m ≥ log(n/ε)/b.

To turn the polynomial interpolation method or the cluster expansion into a polynomial-
time algorithm, we must be able to compute terms of the expansion efficiently.
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The key to doing this is to be able to enumerate connected, induced subgraphs of a graph
G efficiently. To obtain polynomial time algorithms we would like to enumerate all connected,
induced subgraphs of G of size at most k in time polynomial in n and exponential in k. Patel
and Regts give an algorithm to do this [60]. We give a sketch of their algorithm and proof.

We use the following simple but useful bound from [12].

Lemma 5.16. Let G be a graph of max degree ∆ and fix v ∈ V (G). Then the number of

connected, induced subgraphs of G of size k that contain v is at most (e∆)k−1

2 .

The proof of this lemma is by comparison with a ∆-regular tree. Question: what is
the best upper bound you can prove for connected subgraphs of size k containing v (not
necessarily induced)?

The algorithm of Patel and Regts proceeds as follows. Let Tk be the set of all connected
induced subgraphs of G of size k. Constructing T1 can be done in linear time since it is simply
the set V (G). Now given Tk−1 we can construct Tk by appending to each S ∈ Tk−1 one of its

neighbors. There are at most (k− 1)∆ such neighbors and at most n (e∆)k−2

2 such subgraphs
S so this can be done in time polynomial in n and exponential in k. We then iterate through
the (multi)-sets created and remove duplicates, leaving us with Tk.

Finally, to compute terms of the cluster expansion efficiently we need to compute the
Ursell function of a graph H in time exponential in the number of vertices. To see that we
can do this, we first recall the Tutte polynomial : for an n vertex graph G with c connected
components, define

TG(x, y) =
∑

A⊂E(G)

(x− 1)c(A)−c(y − 1)c(A)+|A|−n

where c(A) is the number of connected components of the graph GA = (V (G), A). The Tutte
polynomial is related to many other important graph polynomials. Up to a change of variables
it is the random cluster model partition function. Specializations of the Tutte polynomial
include the chromatic polynomial and the Ising and Potts model partition functions.

We use the fact that evaluating TH(x, y) at (1, 0) and scaling gives the Ursell function
φ(H). Naively from the definition of the Tutte polynomial (or the Ursell function) it looks
like exact computation would take time 2|E(G)|, by summing over all edge subsets. Fortu-
nately, exact computation (in fact, computing the coefficients of TH(x, y)) can be done more
efficiently, in vertex exponential time using an algorithm of Björklund, Husfeldt, Kaski, and
Koivisto [10]. Thus computing the Ursell function of a graph H of size O(log(n/ε)) can be
done in time polynomial in n and 1/ε.

5.6.2 Hard-core model on unbalanced bipartite graphs

Consider a ∆ regular bipartite graph G with bipartition (L,R) each of size n (so G has 2n
vertices). Suppose every vertex in L has fugacity λL and every vertex in R has fugacity λR.
Let ZG(λL, λR) denote the partition function. If λL and λR are both small as a function of
∆ (say ≤ 1/(e∆)) then our previous algorithmic approaches will give efficient approximate
counting and sampling algorithms. If λL = λR = λ and λ is large, the approximating ZG(λ)
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is #BIS-hard: as hard as approximating the number of independent sets in a general bipartite
graph.

What if λL and λR are large but there is an imbalance: say λL > λR? We will show that
if the unbalance is large enough as a function of ∆ then there is an FPTAS for ZG(λL, λR).

What might we expect a typical independent set from the hard-core model to look like if
λL � λR? We might expect such an independent set to be skewed, with most of its vertices
coming from L and few vertices coming from R.

To make this intuition precise, we can consider a generalized notion of a ground state.
Previously a ground state was a spin configuration of maximum weight; in this case, a maxi-
mum size independent set (either the all L occupied or the all R occupied independent sets)
or when λ is small, the empty set. Now we can think of a ground state as being a collection
of spin configurations of collectively large weight that we understand well. In this example,
following our intuition we will take this generalized ground state to be the set of all indepen-
dent sets that contain no vertex from R. The weight of this set of configurations is simply
(1 + λL)n, since each vertex in L can be in or out without constraint.

Now suppose a set S of vertices in R is occupied. What is the total weight of the

corresponding independent sets? We get a factor λ
|S|
R from these occupied vertices. The

vertices in L that belong to the neighborhood of S cannot be in the independent set, but
all others can. So this contributes a factor (1 + λL)n−|N(S)|. All together, and pulling

out the ground state weight, we have a contribution of (1 + λL)n · λ
|S|
R

(1+λL)|N(S)| . We call

w(S) =
λ
|S|
R

(1+λL)|N(S)| the (relative) weight of S ⊆ R.

We say that two vertices u, v ∈ R are 2-linked if they are common neighbors of a vertex
w ∈ L. The 2-linked components of a subset S ⊆ R are the maximal connected components
of S under the 2-linked relation. In particular, if the 2-linked components of S are γ1, . . . , γt
then N(γi) ∩N(γj) = ∅ for all i 6= j. Therefore, we see that the weight of S factorizes over
its 2-linked components:

w(S) =
t∏

j=1

λ
|γj |
R

(1 + λL)|N(γj)|
=

t∏
j=1

w(γj) .

With this factorization, we can define a polymer model. Polymers are 2-linked subsets

γ ⊆ R; the weight function is w(γ) =
λ
|γ|
R

(1+λL)|N(γ)| ; and two polymers γ, γ′ are compatible if

their union is not 2-linked. Then from the discussion above we have the identity

ZG(λL, λR) = (1 + λL)n · Z (44)

where Z is the polymer model partition function.

Now we can verify the Kotecký–Preiss condition.

Lemma 5.17. Let G be a ∆-regular bipartite graph on bipartition (L,R) and consider the
hard-core model with fugacities λL, λR. When

λL ≥
3

2
e3∆2λR − 1 (45)
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the Kotecký–Preiss condition holds for the polymer model defined above, by taking a(γ) = |γ|
and b(γ) = |γ|.

Proof. We first bound the number of polymers of size k incompatible with a given polymer

γ by |γ|∆2 (e∆2)k−1

2 using a similar argument to that for the Ising polymer model above. We
next bound the weight of a polymer of size k: since G is a regular bipartite graph, we have
|N(γ)| ≥ |γ|, and so if |γ| = k,

w(γ) ≤
(

λR
1 + λL

)k
.

Then for any polymer γ,∑
γ′�γ

w(γ′)ea(γ′)+b(γ′) =
∑
γ′�γ

w(γ′)e2|γ′|

≤
∑
k≥1

|γ|∆2 (e∆2)k−1

2

(
λR

1 + λL

)k
e2k

≤ |γ|
2

∑
k≥1

(
e3∆2λR
1 + λL

)k
≤ |γ|

if λL ≥ 3
2e

3∆2λR − 1.

Corollary 5.18. Fix ∆ ≥ 3 and λL, λR so that (45) holds. Then there is an FTPAS for the
hard-core model on the class of ∆-regular bipartite graphs with fugacities λL, λR.

Proof. The FTPAS follows directly from the identity (44). In particular, Lemma 5.17 tells
us that ∣∣∣∣∣∣logZG(λL, λR)− n log(1 + λL)−

∑
Γ:b(Γ)≤t

φ(H(Γ))
∏
γ∈Γ

w(γ)

∣∣∣∣∣∣ ≤ ne−t
and so truncating the cluster expansion up to terms of ‘size’ log(n/ε), where the size of a
cluster is b(Γ) =

∑
γ∈Γ b(γ), gives an ε-relative approximation to ZG(λL, λR). For ∆ fixed,

this can be done in time polynomial in n and 1/ε.

5.6.3 Potts model on expander graphs

Recall the discussion of the q-color ferromagnetic Potts model on expander graphs from
Lecture 3. We defined a polymer model where polymers were connected induced subgraphs
of G of size less than n/2, colored with the q − 1 non-ground-state colors. Let Ẑ denote
the polymer model partition function (by symmetry it is identical for each of the q possible

ground states). We showed that if G is an α-edge-expander and β ≥ 4+2 log(q∆)
α then

e−e
−n
q · eβ|E(G)|Ẑ ≤ ZG(β) ≤ ee−nq · eβ|E(G)|Ẑ ,
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or in other words, qeβ|E(G)|Ẑ is an e−n-relative approximation to the partition function ZG(β).

In terms of an FPTAS this suggest two cases: if, say, ε ≤ 2e−n we can just compute the
partition function by brute force, enumerating over the qn configurations; this is acceptable
since time eO(n) is polynomial in 1/ε in this case. On the other hand, if ε > 2e−n, then we
can find an ε/2-relative approximation to Ẑ, multiply it by qeβ|E(G)| and obtain an ε-relative
approximation to ZG(β).
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6 Exercises

1. Prove that the occupancy fraction of the hard-core model on any non-empty graph G
is a strictly increasing function of λ.

2. Prove that for the hard-core model on Z, the truncated two-point correlation function
decays exponentially fast in the distance, for any λ ≥ 0.

3. Consider a tree T and a vertex v ∈ V (T ) with neighbors u1, . . . , ud. Write a formula for
the marginal µv,λ of the hard-core model at fugacity λ in terms of λ and the marginals
µ−vu1,λ

, . . . , µ−vud,λ of the neighbors of v in the graph T \ v.

4. Derive a formula for the three-point truncated correlation function for vertices u, v, w
in a 2-spin model on a graph in terms of marginals and joint marginals.

5. Let Gn be the set of all (labeled) graphs on n vertices. For m ∈ (0,
(
n
2

)
), determine

the maximum entropy probability distribution on Gn with mean number of edges m.
(Recall that the entropy of a probability distribution µ on a finite set Ω is H(µ) =
−
∑

x∈Ω µ(x) logµ(x) with the convention that 0 log 0 = 0).

6. Let Kd be the complete graph (clique) on d vertices.

(a) Compute the hard-core partition function ZKd(λ).

(b) For u, v ∈ Kd compute the truncated two-point correlation function.

7. Let G = G1 ∪G2, the disjoint union of two graphs G1, G2. Prove that

ZG(λ) = ZG1(λ)ZG2(λ) .

8. Let Kd,d be the complete d-regular bipartite graph (two sets of d vertices L,R) with all
d2 edges between L and R present and no others).

(a) Compute ZKd,d(λ).

(b) Compute EKd,d,λ|I|, the expected size of an independent set I drawn from the
hard-core model on Kd,d at fugacity λ.

9. Prove that the following probability distribution on independent sets of G is the hard-
core model on G at fugacity λ. Pick a subset S ⊆ V (G) by including each vertex
independently with probability λ

1+λ and condition on the event that S is an independent
set.

10. Consider the hard-core model on a graph G and let F be the set of vertices that are not
in the independent set and have no neighbor in the independent set (they are free to
be added to the independent set). Calculate E[|F |] in terms of derivatives of logZG(λ).

11. Let ik(G) be the number of independent sets of size k in a graph G.

(a) Give a probabilistic interpretation (as, say, and expectation) for the quantity
ik+1(G)
ik(G) in terms of the uniform distribution over independent sets of size k in
G.
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(b) Prove that for all G of maximum degree ∆ on n vertices,

ik+1(G)

ik(G)
≥ n− (∆ + 1)k

k + 1
,

and find a family of graphs for which the inequality is tight.

(c) Use the above to prove that for all G of maximum degree ∆ on n vertices,

1

n
logZG(λ) ≥ 1

∆ + 1
log(1 + (∆ + 1)λ) ,

and show that the inequality is tight. (Hint: recall that partition functions are
multiplicative over disjoint graphs and that ZG(λ) is a polynomial).

12. Prove that for any λ > 0,

ik(G) =
ZG(λ)

λk
Pr
G,λ

(|I| = k)

where ik(G) is the number of independent sets of size k in G and the probability (and
the partition function) is with respect to the hard-core model on G at fugacity λ.

13. Pick an independent set I from the hard-core model on a d-regular, triangle-free graph
G at fugacity λ > 0, and pick v uniformly at random. Let Y be the number of uncovered
neighbors of v with respect to I (an integer-valued random variable bounded between
0 and d).

(a) Show that if Y is supported on 0 and d, then G is the complete bipartite graph
Kd,d or a union of Kd,d’s.

(b) Suppose G has no component isomorphic to Kd,d. Prove a positive lower bound
on Pr(Y /∈ {0, d}) in terms of d and λ. (The lower bound should not depend on
the size of the graph G).

(c) Using the previous two results and the theorem we proved in class, prove that for
every d and λ > 0 there exists ε > 0 so that for every d-regular, triangle-free graph
G on n vertices without a Kd,d component,

1

n
logZG(λ) ≤ 1

2d
logZKd,d(λ)− ε .

(The result extends to graphs that may contain triangles).

14. Gdenko’s Local Central Limit Theorem states the following: Let X be an integer valued
random variable with mean µ and variance σ2 whose support has gcd 1. Let X1, X2, . . .
be iid copies of X and let Sn =

∑n
j=1Xj . Then for every integer k,

Pr(X = k) =
1√

2πσ2n
e−

(k−µ)2

2σ2n + o(n−1/2) .

(Why is the gcd condition necessary?)

Let Hd,n be the graph that is a union of n/2d copies of Kd,d.
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(a) Show that for every k ∈ {0, 1, . . . , n/2} there exists λ ≥ 0 so that the expected
size of an independent set drawn from the hard-core model on Hd,n at fugacity λ
is exactly k.

(b) Fix ε > 0 and suppose εn < k < (1 − ε)n/2. Choose λ so that the expected size
size of an independent set drawn from the hard-core model on Hd,n at fugacity λ
is exactly k. Show that

Pr(|I| = k) = Θ(n−1/2) .

(c) Prove the following. For every ε > 0, there exists n0 = n0(ε, d) large enough
so that the following holds: for all n ≥ n0 divisible by 2d, every d-regular G
on n vertices that does not contain a component isomorphic to Kd,d, and every
εn ≤ k ≤ n/2,

ik(G) < ik(Hd,n) .

(Hint: use the result from Question 2 as an input)

(d) (Harder) Prove the same result without the assumption that G contains no com-
ponent isomorphic to Kd,d. Hint: consider two cases, depending on the fraction of
vertices in Kd,d components. In the case that there are many Kd,d components,
analyze what the distribution of a uniformly random independent set of size k
looks like restricted to the part of G that is not in a Kd,d component.

15. Compute the moment generating function of a Poisson(λ) random variable and use this
to prove a formula for the cumulants of a Poisson random variable.

16. Prove that the clique Kd+1 has the highest triangle density (number of triangles divided
by number of vertices) of any d-regular graph.

17. Show that there is a sequence of d-regular graphs Gd so that the smallest complex root
(in complex absolute value) of ZGd(λ) is Θ(1/d).

18. Fix ∆ > 0 and 0 < λ < 1
e(∆+1) . Let Gn be a sequence of n vertex graphs of max degree

∆. Let Xn be the size of a random independent set drawn from the hard-core model
on Gn at activity λ.

(a) Prove that var(Xn) = Ω(n). Hint: use the law of total variance and the fact that
G has a linear sized set of vertices at pairwise distance at least 3.

(b) Prove that var(Xn) = O(n). Hint: use cluster expansion convergence.

(c) For k ≥ 3 fixed, prove an asymptotic upper bound on the kth cumulant of X,
κk(X).

(d) Deduce that X is asymptotically normal; that is, (X −EX)/
√

var(X)⇒ N(0, 1).

(e) Write a formula using the cluster expansion for the cumulant generating function
of X, logEetX . For what t does this converge?

(f) Using the previous result prove a large deviation result for X, i.e. the best upper
bound you can on the probability

Pr(X ≥ (1 + δ)EX) .
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19. Prove that the clique Kd+1 has the highest triangle density (number of triangles divided
by number of vertices) of any d-regular graph, and that there is gap to any graph that
does not contain a Kd+1 component.

20. Use the previous result and the cluster expansion for the generating function of
matchings (monomer-dimer partition function) to prove that for some λ∗(d) > 0, all
0 < λ < λ∗ and all d-regular graphs G not containing a Kd+1 component we have

1

|V (G)|
logZmatch

G (λ) >
1

d+ 1
logZmatch

Kd+1
(λ) .

The monomer-dimer partition function is

Zmatch
G (λ) =

∑
M∈M(G)

λ|M |

where the sum is over all matchings of G. A matching is an independent set in L(G),
the line graph of G.

(Harder) Can you extend this to prove that for all d-regular G and all 0 < λ < λ∗

1

|V (G)|
logZmatch

G (λ) ≥ 1

d+ 1
logZmatch

Kd+1
(λ) .

21. Let G be a ∆-regular bipartite graph on bipartition (L,R) each of size n, with ∆ =
cn1/3. Suppose each vertex in L has fugacity λL = `n−2/3 and each vertex in R has
fugacity λR = rn−2/3. Let IL, IR be the number of occupied vertices in L and R
respectively.

(a) Use the cluster expansion to write an asymptotic formula for E|IL| and E|IR|.
(b) Use the cluster expansion to write an asymptotic formula for cov(IL, IR).

(c) Prove that after suitable centering and scaling the random vector (IL, IR) con-
verges to a bivariate Gaussian.

22. Let G be a biregular, bipartite graph with bipartition (L,R) and suppose every vertex
in L has degree ∆L and every vertex in R has degree ∆R. Assume that ∆R > ∆L.

(a) When ∆R is much bigger than ∆L, what do you expect typical uniformly random
independent sets from G to look like?

(b) Write the hard-core partition function of G as the partition function of a polymer
model measuring deviations from the generalized ground state of the independents
sets with no vertex from R.

(c) How large must ∆R be as a function of ∆L to guarantee convergence of the cluster
expansion for the polymer model when λ = 1?

23. Prove that the following are equivalent (by providing polynomial-time reductions):

• There is an FPRAS for ZG(λ) for the class of max degree ∆ graphs.
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• There is a polynomial-time approximate sampling algorithm for µG,λ for the class
of max degree ∆ graphs.

24. Prove that if there is a polynomial-time approximate sampling algorithm for µG,λ for
some class of graphs G and all 0 < λ < λ0 then there is an FPRAS for ZG(λ) for G and
and all 0 < λ < λ0.

25. The lazy random walk on a graph is the following Markov chain: starting at a vertex
v, with probability 1/2 stay at v and with probability 1/2 move to a uniformly random
neighbor of v.

(a) SupposeG is regular and connected. Prove that the lazy random walk is irreducible
and aperiodic (look up these terms on google if needed!). What is the stationary
distribution?

(b) If G is connected and regular on n vertices, what is the order of the best and worst
possible mixing times of the lazy random walk? (I.e. find good and bad graphs
for this Markov chain). What if G is ∆-regular for ∆ constant? What’s the best
mixing time you can expect?

26. (Coupling). Consider the lazy random walk on the hypercube Qd = {0, 1}d. Start two
copies of this Markov chain from different states X0, Y0 ∈ Qd. Find a coupling of the
two processes Xn, Yn so the expected number of steps until they coincide (Xn = Yn) is
as small as possible.

27. (Total variation distance) For m ≥ n consider the following distributions of configu-
rations of m balls in n labeled bins: 1) place each of the m balls independently in
uniformly chosen random bins; 2) start with one ball in each bin and place the re-
maining m − n balls independently in uniformly chosen random bins. Call the two
distribution µ1, µ2 respectively (both depend on n and m).

(a) Find good strategy for the following game: I pick µ1 or µ2 with probability 1/2
each and show you one sample from the given distribution; from the sample you
have to guess which distribution it came from. For what m = m(n) can you win
this game with probability 1− o(1)?

(b) What does the strategy and probability of winning have to do with ‖µ1 − µ2‖TV ?

(c) Can you find the optimal threshold in m = m(n) for ‖µ1 − µ2‖TV → 0?
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