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TALK OUTLINE

@ Setting

© Path Coupling and Dobrushin Uniqueness:
Rapid Mixing for very high temperature.

@ Strong Spatial Mixing (SSM):
Ferro Ising: O(nlog n) mixing on boxes of Z?2

@ Mossel-Sly for General Graphs:
Ferro Ising: O(nlog n) mixing for general graphs
@ Correlation Decay:
2-spin antiferro: FPTAS for general graphs

O Spectral Independence:
2-spin antiferro: O(nlog n) mixing for general graphs



IsiING MODEL

Consider graph G = (V,E) as L x L box of Z2, n= |V

Configurations: 2 = {—1,+1}V.

Inverse temperature 3. For o € §2:

Monochromatic edges: M(o) = |{(v,w) € E : o(v)=0c(w)}|

M
Sampling:  Gibbs distribution: u(c) = exp(BZ(a))
Counting:  Partition function: Z = Zg = Z exp(BM(0)).
oef?

B > 0 is ferromagnetic and 3 < 0 is anti-ferromagnetic



MARKOV CHAIN FOR ISING MODEL

Glauber Dynamics: For G = (V, E), MC (X;) on 2 = {—1,+1}".
From X; € (2:

e Choose v € V uniformly at random.
e For all w # v, set Xiy1(w) = Xe(w).

e Choose X;y1(v) from marginal conditional on neighbors spin:

u(o (Vo (w) = Xera(w), w € N(v)).
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Tiix(€) = )’g‘a}gmi”{f L drv(PH(Xo, ), ) < €}

For dist. u,v on £2, drv(u, v g | pe(x x)| = gnag,u(S) v(S).
C
XEQ

Mixing time: Tmix := Tmix(1/4)
Sub-multiplicative: Tpix(€) < [logy(1/€)] Tmix



COUNTING < SAMPLING

Let G denote all graphs of maximum degree A.

Approx sampler pug, VG € Ga <> Approx counting Zg VG € Ga.

Approximate sampler:

Given graph G = (V,E) € Ga and ¢ > 0, outputs X where
drv(X, pne) <6,

in time poly(|V/|, log(1/6)).

FPRAS for approximate counting:
Given graph G = (V, E) of maximum degree A and d,¢ > 0,
outputs OUT where
Pr((1—¢)OUT <Zs <(1+€)0OUT)>1-4,
in time poly(|V/],1/¢, log(1/6)).

FPTAS = FPRAS with § = 0.



COUNTING < SAMPLING

Approx counting via Sampling

Simulated annealing: Let fo =8> 81 > -+ > Be_1 > B¢ = 0.
Simple scheme: §; = Bi_1(1+ 1/n).

_ Z6(bo) Zs(B1)  Zs(Be-1) 5n
Z6(B1) Z6(B2) ~ Zs(Br)

Z(B)

. Zc(B:) . . _ wg (o)
Estimate ZG?/BI'—I) by sampling p(5;—1), outputting X; = w1 (@)

If Var(X;) = O(1) for all i, then, O((¢/€)?) total samples suffices.
Better scheme: exists ¢ = O(+y/n x poly(log n)).

[Stefankovic-Vempala-V '09], [Huber '15],[Kolmogorov '18]

Twix = O(nlog n) = FPRAS in O((n/¢)?log n) time.



PAaTH COUPLING/DOBRUSHIN UNIQUENESS

Bounding mixing time of Glauber dynamics.

Simple/classical technique:
Path coupling and Dobrushin uniqueness condition

How well do these approaches perform?

For now: Ferromagnetic Ising model.



GLAUBER DYNAMICS FOR ISING MODEL

For G = (V,E), let 2 ={-1,+1}V.
From X; € (2:
@ Choose v € V uniformly at random.
e For all w # v, set Xpyr1(w) = Xe(w).
@ Choose X;11(v) from marginal conditional on neighbors spin.

Tix = )r(r;gé min{t : drv(P*(Xo, "), ) < 1/4}.



COUPLING FOR BOUNDING T ix

For all X:, Y;, define a coupling: (X, Yi) = (Xet1, Yet1).

Look at Hamming distance: H; = [{v € V : X;(v) # Yi(v)}].

If for all Xt7 Yt € Q, E[Ht+1|Xt, Yt] S (1 — 1/”)Ht,
then Topix = O(nlogn).

drv(XT, Y1) < Pr (Xt # Y1) <E[H:] < Ho(1—1/n)" < nexp(—T/n) < 1/4.

Path coupling [Bubley-Dyer '97]: Suffices to consider pairs where H, = 1.
Idea: Couplings compose and linearity of expectation.



PaTH COUPLING ON Z2:

Consider a pair (X;, Y;) that differ at exactly one vertex v*:

o—r T —

Update v* then H(Xes1, Yis1) = 0.
For w € N(v*). Let d,} (d,,) be number of + (and —) neighbors in Y;.

Update w € N(v*) then H(X;4+1, Yey1) = 2 with probability:

exp((d, +1)) exp(Bd,)

U o (BT + 1)+ expl(O(dy — 1)) exp(5) + exp(A(ds )

1 1
E[H(Xt+1, Y <1l——+-— .
[H(Xex1, Yes1)] < P GXN‘Z )a(w)

Worst case dT = d—. When d = 4 works for 3 < .55.



PaTH COUPLING ON Z2:

Consider a pair (X;, Y;) that differ at exactly one vertex v*:

o—r T —

Update v* then H(Xes1, Yis1) = 0.
For w € N(v*). Let d,} (d,,) be number of + (and —) neighbors in Y;.

Update w € N(v*) then H(X;4+1, Yey1) = 2 with probability:

exp((d, +1)) exp(Bd,)

~ exp(B(d + 1)) + exp(Bldw — 1)) exp(Bdiy) + exp(B(dw )

1 1
E[H(Xt+1, Y <1l——+-— .
[H(Xex1, Yes1)] < P GXN‘Z )a(w)

Worst case dt = d=. When d = 4 works for 8 < .55.
Goal: All 3 < B = In(1 + V/2).



PATH COUPLING VS. DOBRUSHIN UNIQUENESS

For a configuration o € {+,—}Y and w € V, let

o (2) = {cr(z) forz £ w

—o(w) forz=w.

What's the effect of disagreement at v on neighbors of v?

Path coupling condition:

maxmax > drv |1(0(2)lo(N(2)), n(0(2)lo"(N()) | < 1.

zeN(w)

Dobrushin uniqueness:

max > max drv [(o(2)lo(N(2)).n(0(Dle™(N(2)] < 1.

zeN(w)

Can we prove rapid mixing for all 3 < 3.(Z?)?
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UNIQUENESS PHASE TRANSITION?

Influence of boundary:

Let p, = Pr(Origin has + | all + boundary for L x L box).

Let p, = Pr(Origin has + | all - boundary for L x L box).



UNIQUENESS PHASE TRANSITION?

Influence of boundary:
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For ferromagnetic Ising model, critical point 3(Z?) = In(1 + v/2):

For all 8 < Bc(Z?), im0 pi —p, =0 uniqueness
For all g > /3C(Zz), lim; oo pi —p; >0 non-uniqueness

Ferro Potts: 3:(Z?) = In(1+ ,/q) [Beffara,Duminil-Copin '12]



PHASE TRANSITION ON REGULAR TREE

For A-regular tree of height ¢:

p; = Pr( root has spin + | leaves have spin +)
p, = Pr( root has spin + | leaves have spin -)

Does I|m Pz = I|m pk ?

GOD OO

B kT N R T
@ Uniqueness (8 < (T A)): No boundary affects root.

@ Non-Uniqueness (8 > B.(Ta)): Exist boundaries affect root.

[Haggstrom '96]: B.(Ta) = In (ﬁ)



GLAUBER DYNAMICS ON Z?2

For L x L box of Z? with volume n = |V/|:

high temp. 5 < B fe low temp. 8 > ¢
O(nlog n) mixing of Glauber exp(2(y/n)) mixing of Glauber
for all b.c. for periodic/free b.c.

Recall, 8(Z?) = In(1 + V/2).

Open: Mixing time for all 4+ boundary for low-temperature region.

Note: FPRAS for Potts g > qo for all 3 (for periodic boundary)
(Matthew's talk?) [BCHPT '20]



SPATIAL MIXING

For a box A, and v € V, let p(v) = Pr(v = +).

Weak Spatial Mixing (WSM):
d4C,a >0, all A,, all v € V, all boundaries o, on T C 0A,:

Ip? (v) — p"(v)| < Cexp(—adist(v, T)))
Strong Spatial Mixing (SSM):
dC,a >0, all A,, all v € V, all boundaries o, 7 on T C 0A,:
Ip7(v) = p"(v)| < Cexp(—adist(v, 5)),

where o and 7 differon S C T.

-
| ® +-
1y WM SSM -
+H +-

HE A

In 2-dimensions, for all 5 < B.: SSM holds.
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For a box A, and v € V, let p(v) = Pr(v = +).

Weak Spatial Mixing (WSM):
d4C,a >0, all A,, all v € V, all boundaries o, on T C 0A,:
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In 2-dimensions, for all § < S.: SSM holds.



PROOF IDEA [MO "94, MOS 94, Cisi '01, DSVW "04]

SSM = O(nlog n) mixing on L x L box A with volume n= |V/|:

Arbitrary X, Yo. Goal: Pr(Xr # Y1) <1/4 for T = O(nlogn).
Suffices: for all v € V, Pr(X7(v) # Yr(v)) < 1/(4n).

Boosting argument: Suppose we know Trix = n*%.

For ¢ = log n, consider small £ x £ box B, around v.
After n''% steps on big A, n"® updates on small B, so locally mixed!

Monotonicity: couple so that if X; < Y; then Xiy1 < Yiq1.

Suffices to couple Wo = all —1 and Zo = all +1.
Bounding chains: Wy = —1,2y = 41, frozen in B: W < X; <Y < Z;
Wi X¢ Y¢ Z

fixed - fixed +

s || of || o || of

SSM

Pr(Xr(v) # Yr(v) < Pr(Wr(v) # Zr(v))
S IPr(Wr(v) = ) —pg (v = D)l+lug (v = D) =pg(v = HHpg(v = +)=Pr(Zr(v) = +)| < 1/4n,
by induction (outer terms) + SSM (inner term).

Y (n) = O(n/ log n) x TR (C log? n):

2" — pOloen) _y O(p'te) — O(nlog® n).



FERRO ISING ON GENERAL GRAPHS

What about general graphs? (previous only works for amenable
graphs)

For graphs of maximum degree A,
computational phase transition at tree critical point.

high temp. 38 < B¢ Bc(Ta) low temp. 5 > (¢
O(nlog n) mixing of Glauber exp(£2(n)) mixing of Glauber
on all G of max degree A on random A-regular

Let Bc(Tq) =1In ( ) denote the critical point for infinite d-regular tree Ty.

NOW: [Mossel-Sly "13]: Al A, all § > 0, 3C = C(4, ), all G max deg A,
all B < (1=6)B(Ta),
Tmix < Cnlog n.

[Jerrum-Sinclair '93]: VG, 8, FPRAS (using high-temp. expansion)
[Guo-Jerrum '17]: VG, 8, Swendsen-Wang poly(n) mixing



SPATIAL MIXING

For y € 0A, and boundary o, obtain ¢ by “flipping” spin at y.
Pointwise Strong Spatial Mixing: (equivalent to SSM on Z2)
Exists C,a > 0, all A, all v e V, all y € 94, boundaries o, 0”:

lo(v =4) — por (v = +)| < Cexp(—adist(v, y))

For v € V and integer R > 1, let Bg(v) = {w : dist(v,w) < R}.

Aggregate Strong Spatial Mixing (ASSM) for graph G = (V, E):
Exists R, all v € V, for B = Bg(v),

ASSM holds if > max |us(v = +) = jiov (v = +)| <
y€eoB 7

ENJ.

For all G of max degree A, all 8 < Bc(Ta), ASSM holds on G.



GENERAL GRAPHS

[Mossel-Sly '09] Proof Approach:

e Previous approach for grid:
Box/ball B of radius §2(log n) around v.
But for arbitrary G, |B| can be |G|.
—Use constant R satisfies ASSM.

e Need to do multiple stages, can't couple in one round.
= Induction on disagreement probability for a vertex
Key Lemma: For all s > 0,

maxPr (Xeir (v) # Yo/ (v)) < 5 maxPr(Xs(v) # Ys(1)),

where T’ = Ci7 Tmix(|B]) = O(n). = Hence, Twix = O(nlog(n/e)).
e Bounding chains: Wy = —1, Zy = +1, but only frozen on B for t > s.
W;(B) and Zs(B) are arbitrary, so no monotonicity.
[Peres-Winkler "13] Censoring: “Extra moves don't hurt”:
drv(We, 1) > drv(Xe, 1) and drv(Ye, 1) < drv(Ze, p).
= suffices to bound Pr (W, 7/(v) # Zs 7/ (v)).



ANTIFERRO MODELS ON GENERAL GRAPHS

What about
Antiferrromagnetic Ising model on graphs of max degree A?

e Computational phase transition at tree critical point?
e FPRAS/FPTAS for approximate counting?
e Rapid mixing of Glauber?

Focus on hard-core model
Any 2-spin antiferromagnetic model, e.g. antiferro Ising.



HARD-CORE (GAS) MODEL

For G = (V, E), independent set is o C V where:
forall (y,z) € E,y¢goorz¢go.

Graph G = (V, E), fugacity A\ > 0, for each independent set o we

have
Aol

Gibbs distribution: (o) >

where
Partition function: Z = Z Al
(e

A=1, Z = |02 = # of independent sets.

Inuition: Small X easier: for A < 1 prefer empty set/smaller sets.
Large A harder: for A > 1 prefer max IS’s/larger sets.



HARD-CORE PHASE TRANSITION

Influence of boundary:

even

Let p{™" = Pr (Origin occupied | even boundary for L x L box).

Let p9! = Pr( Origin occupied | odd boundary for L x L box).



HARD-CORE PHASE TRANSITION

Influence of boundary:

Conjecture: There exists critical point A\.(Z?) where:

For all A < A\o(Z?), limi_u0 py" — pczdd: 0 uniqueness
For all A > \(Z?), lim;_s0 A pczdd> 0 non-uniqueness
For 2-dimensional integer lattice Z?:

Conjecture: Ae(Z?) =~ 3.79
Best bounds: 2.53 < A\.(Z?) < 5.36 [SSSY '15, BGRT '13]



PHASE TRANSITION ON TREES

For A-regular tree of height ¢:

Let py := Pr(root is occupied)

KA RER

Extremal cases: even versus odd height.
Does lim poy = lim popy1 ?
{—00 {—00
A—1 A-1 ,
Ac(Ta) = 7((A,)2)A R 15 [Kelly '86]
A < A(TA): No boundary effects root. uniqueness
A > Ac(TA): Exist boundaries effect root. non-uniqueness
A(L=pg)2~1
S
Key: Unique vs. Multiple fixed points of 2-level recursions.

Tree/BP recursions: pypi1 =



ANTIFERROMAGNETIC ON GENERAL GRAPHS

_1\4A-1 e
Ae(Ta) = ((AA_1)2)A it

high temp. A < Ac  Ac(TAa) low temp. A > A¢

O(nlog n) mixing of Glauber No FPRAS
on all G of max degree A

NOW: 1. Theorem [Weitz '06]: For all A, all § > 0, exists C = C(4, ), for
A< (1—=06)A(Ta) and G of max degree A, can approximate Zg within (1 +¢)
in time (n/e?)c.

[Barvinok '16,Patel-Regts '17,Peters-Regts '19]. Alternative FPTAS via
Barvinok’s polynomial interpolation method. (Next talk?)

2. Theorem [Chen-Liu-V '20]: For all A, all § > 0, exists C = C(4, ¢), for
A< (1=0)A(TAa) and G max degree A, Glauber mixes in time < Cnlogn.
(Uses [Anari-Liu-Oveis Gharan '20] Spectral Independence approach.)

Theorem [Sly '09, Sly-Sun '14, Galanis-Stefankovic-V '14]: For all A > A\.(0),
unless NP = RP, no FPRAS for all graphs of maximum degree A.
(Hard to approximate within C" for C = C(A)).

L 2



[WEITZ ’06]’S ALGORITHMIC APPROACH

Idea for FPTAS for Zg()).
Input: G = (V, E) of max degree A and A\ < A¢(Tx).

Fix (arbitrarily) a vertex v, then:
@ Compute marginal prob. v is unoccupied/occupied;

@ Recurse on G\ v or G\ (v U N(v)) with probabilities from
step 1.



[WEITZ ’06]’S ALGORITHMIC APPROACH

Idea for FPTAS for Zg()).
Input: G = (V, E) of max degree A and A\ < A¢(Tx).

Fix (arbitrarily) a vertex v, then:
@ Compute marginal prob. v is unoccupied/occupied; HOW?

@ Recurse on G\ v or G\ (v U N(v)) with probabilities from
step 1.



WEITz’s SAW TREE

Fix G=(V,E)and ac V.
Let T = Tsaw(G, a) be the self-avoiding walks in G starting at a,
with a particular fixed assignment to the leaves of T.

Theorem [Weitz '06]: Prop. (2 ¢ 0) = Pro~pu, (a ¢ 0)

Boundary: for each vertex order neighbors.
Root-leaf path ends with a cycle, e.g., b—c—f —e— b.
Then fix the leaf to unoccupied if ¢ > e and occupied if ¢ < e.




HIGH-LEVEL IDEA OF [WEITZ ’06]’S APPROACH

Let T = Tsaw(G, V) be the self-avoiding walks in G starting at v,
with a particular fixed assignment to the leaves of T.

Theorem [Weitz '06]: Promp. (v & 0) = Prou, (v € 0)
(Only holds for 2-spin systems.)

In tree of size N, compute marginal of root (tree recursions) in poly(N) time
but SAW tree N = A",

Second ingredient:
For every tree T of max deg A, SSM holds when A < Ac(Ta).
= truncate tree at depth O(logn)

Running time: AOlogn) _ 0(log 4)

How to prove SSM?
Show contraction of a potential function for the Jacobian of the log ratio of
marginals (tree recursions).

[Li-Lu-Yin "13] 2-spin antiferro. spin system in tree uniqueness region.



ANTIFERROMAGNETIC ON GENERAL GRAPHS

A— A—-1
/\C(TA) = ((A_l)g)A ~ Ae_g-

high temp. A < Ac  Ac(Ta) low temp. A > \¢

O(nlog n) mixing of Glauber No FPRAS
on all G of max degree A

1. Theorem [Weitz '06]: For all A, all § > 0, exists C = C(A, ), for
A< (1=0)Ac(TAa) and G of max degree A, can approximate Zg within (1 +¢)
in time (n/e®)c.

NOW: 2. Theorem [Chen-Liu-V '20]: For all A, all § > 0, exists C = C(4, ),
for A < (1 —0)Ac(TAa) and G max degree A, Glauber mixes in time < Cnlogn.
(Uses [Anari-Liu-Oveis Gharan '20] Spectral Independence approach.)

(see Zongchen's talk for more details)



ALQO’s SPECTRAL INDEPENDENCE

[Anari-Liu-Oveis Gharan '20] Spectral Independence approach:
For a pair of vertices u, w € V, the influence of u on w:
Zu(u = w) = u(o(w) = Llo(u) = 1) - p(o(w) = 1jo(u) = 0)

We need to consider the influence for any boundary or pining:
For A C V and 7 € 24, let

Zi(u = w) = p(o(w) = 1o(u) =1,7) = p(o(w) = 1|o(u) = 0,7)
Let ¥} denote the n x n Influence matrix of pairwise influences.

Definition: n-spectrally independent if for all A C V, all 7 € 24, M(¥);) < 7.
Definition: p is b-marginally bounded if for all A C V, all T € {24, all
ue V\A alieR], ulo, =ilT) > b.

Theorem [Chen-Liu-V "20]: If b-marginally bounded and 7n-spectrally
independent then 3C = C(A,n, b), the mixing time of Glauber is < Cnlog n.

Note, C = (%)O("/bQ).

For hard-core: show 7 = O(1/8) and b= 2(\/(1 + \)?)).



BOUNDING INFLUENCE MATRIX

Pairwise influence:
L(u— w) = p(o(w) = Lio(u) = 1) — pu(o(w) = Lio(u) = 0)

Let ¥ denote the n x n Influence matrix of pairwise influences.

How to bound A;(¥) < n?
Note: Ai(¥) < maxeev Y,y |Z(v = r)] and A\ (¥) < maxev ), |Z(r — v)|.
Key Lemma: Fix A C V,7 € 24. Fixre V, let T = Teaw(G, r, 7).
Te(r—w)= > Ir(r = W),
weSy

where S, is the set of all copies of w in T.

Then' ZWEV |IE(I’ — W)‘ = EZ EZGLZ ‘IT(r — Z)
where L, are the vertices at distance ¢ from the root r in T.

1

Finally, for ferro Ising can bound using ASSM (spatial mixing in [Mossel-Sly]),
and for other 2-spin systems using potential functions as for proofs of SSM.



CONCLUSIONS

Open Problems:

Mixing time is < Cnlog n where C = C(A4, ).

For Ising obtain C = poly(A).

Can we establish it for hard-core model?

SSM <= Spectral Independence

Absence of complex zeros PRI Spectral Independence
(Anari's talk?)

Ferro Potts:

Open: FPRAS for 5 < B4,(Ta)?

Known: #BIS-hard for 5 > (T A) [GSVY '14]

k-colorings:

Known: O(nlog n) mixing when k > 2A [Jerrum '95]
O(n?) mixing when k > (11/6 — €)A [CDMPP'19]

O(nlog n) for triangle-free graphs k > 1.764A
[FGYZ'20,CGSV'20,CLY"20]
For even k < A, no FPRAS (unless NP = RP)  [GSV'14]
Open: FPRAS for k > A+ 17



