INTRO TO COUNTING AND SAMPLING

Eric Vigoda

Georgia Tech

Uniqueness Workshop, December '20

TALK OUTLINE

Setting

- Path Coupling and Dobrushin Uniqueness: Rapid Mixing for very high temperature.
- Strong Spatial Mixing (SSM): Ferro Ising: $O(n \log n)$ mixing on boxes of \mathbb{Z}^2
- Mossel-Sly for General Graphs:

Ferro Ising: $O(n \log n)$ mixing for general graphs

Orrelation Decay:

2-spin antiferro: FPTAS for general graphs

Spectral Independence:

2-spin antiferro: $O(n \log n)$ mixing for general graphs

ISING MODEL

Consider graph G = (V, E) as $L \times L$ box of \mathbb{Z}^2 , n = |V|:

Configurations: $\Omega = \{-1, +1\}^V$.

Inverse temperature β . For $\sigma \in \Omega$:

Monochromatic edges: $M(\sigma) = |\{(v, w) \in E : \sigma(v) = \sigma(w)\}|$

Sampling: Gibbs distribution: $\mu(\sigma) = \frac{\exp(\beta M(\sigma))}{Z}$ Counting: Partition function: $Z = Z_G = \sum_{\sigma \in \Omega} \exp(\beta M(\sigma))$.

 $\beta > 0$ is ferromagnetic and $\beta < 0$ is anti-ferromagnetic

Glauber Dynamics: For G = (V, E), MC (X_t) on $\Omega = \{-1, +1\}^V$.

From $X_t \in \Omega$:

- Choose $v \in V$ uniformly at random.
- For all $w \neq v$, set $X_{t+1}(w) = X_t(w)$.
- Choose $X_{t+1}(v)$ from marginal conditional on neighbors spin:

$$\mu(\sigma(v)|\sigma(w) = X_{t+1}(w), w \in N(v)).$$

Glauber Dynamics: For G = (V, E), MC (X_t) on $\Omega = \{-1, +1\}^V$.

From $X_t \in \Omega$:

- Choose $v \in V$ uniformly at random.
- For all $w \neq v$, set $X_{t+1}(w) = X_t(w)$.
- Choose $X_{t+1}(v)$ from marginal conditional on neighbors spin:

$$\mu(\sigma(v)|\sigma(w) = X_{t+1}(w), \ w \in N(v)).$$

Stationary distribution π is Gibbs distribution μ .

Glauber Dynamics: For G = (V, E), MC (X_t) on $\Omega = \{-1, +1\}^V$.

From $X_t \in \Omega$:

- Choose $v \in V$ uniformly at random.
- For all $w \neq v$, set $X_{t+1}(w) = X_t(w)$.
- Choose $X_{t+1}(v)$ from marginal conditional on neighbors spin:

$$\mu(\sigma(\mathbf{v})|\sigma(\mathbf{w}) = X_{t+1}(\mathbf{w}), \ \mathbf{w} \in N(\mathbf{v})).$$

Stationary distribution π is Gibbs distribution μ . How fast does it converge to π ?

Glauber Dynamics: For G = (V, E), MC (X_t) on $\Omega = \{-1, +1\}^V$.

From $X_t \in \Omega$:

- Choose $v \in V$ uniformly at random.
- For all $w \neq v$, set $X_{t+1}(w) = X_t(w)$.
- Choose $X_{t+1}(v)$ from marginal conditional on neighbors spin:

$$\mu(\sigma(\mathbf{v})|\sigma(\mathbf{w}) = X_{t+1}(\mathbf{w}), \ \mathbf{w} \in N(\mathbf{v})).$$

Stationary distribution π is Gibbs distribution μ .

How fast does it converge to
$$\pi$$
?
 $T_{\min}(\epsilon) = \max_{X_0 \in \Omega} \min\{t : d_{\mathsf{TV}}(P^t(X_0, \cdot), \pi) \le \epsilon\}.$
For dist. μ, ν on Ω , $d_{\mathsf{TV}}(\mu, \nu) = \frac{1}{2} \sum_{x \in \Omega} |\mu(x) - \nu(x)| = \max_{S \subseteq \Omega} \mu(S) - \nu(S).$

 $\begin{array}{ll} \mbox{Mixing time:} & T_{\rm mix} := T_{\rm mix}(1/4) \\ \mbox{Sub-multiplicative:} & T_{\rm mix}(\epsilon) \leq \lceil \log_2(1/\epsilon) \rceil T_{\rm mix} \end{array}$

Let \mathcal{G}_{Δ} denote all graphs of maximum degree Δ .

Approx sampler μ_{G} , $\forall G \in \mathcal{G}_{\Delta} \leftrightarrow$ Approx counting $Z_{G} \forall G \in \mathcal{G}_{\Delta}$.

Approximate sampler:

Given graph $G = (V, E) \in \mathcal{G}_{\Delta}$ and $\delta > 0$, outputs X where $d_{TV}(X, \mu_G) \leq \delta$,

in time poly($|V|, \log(1/\delta)$).

FPRAS for approximate counting:

Given graph G = (V, E) of maximum degree Δ and $\delta, \epsilon > 0$, outputs *OUT* where

 $\Pr\left((1-\epsilon)OUT \le Z_G \le (1+\epsilon)OUT\right) \ge 1-\delta,$ in time poly($|V|, 1/\epsilon, \log(1/\delta)$).

FPTAS = FPRAS with $\delta = 0$.

Approx counting via Sampling

Simulated annealing: Let $\beta_0 = \beta > \beta_1 > \cdots > \beta_{\ell-1} > \beta_\ell \approx \infty$. Simple scheme: $\beta_i = \beta_{i-1}(1+1/n)$.

$$Z_G(\beta) = \frac{Z_G(\beta_0)}{Z_G(\beta_1)} \frac{Z_G(\beta_1)}{Z_G(\beta_2)} \dots \frac{Z_G(\beta_{\ell-1})}{Z_G(\beta_{\ell})} 2^n.$$

Estimate $\frac{Z_G(\beta_i)}{Z_G(\beta_{i-1})}$ by sampling $\mu(\beta_{i-1})$, outputting $X_i = \frac{w_{\beta_i}(\sigma)}{w_{\beta_{i-1}}(\sigma)}$. If $Var(X_i) = O(1)$ for all *i*, then, $O((\ell/\epsilon)^2)$ total samples suffices. Better scheme: exists $\ell = O(\sqrt{n} \times \text{poly}(\log n))$.

[Stefankovic-Vempala-V '09], [Huber '15], [Kolmogorov '18]

 $T_{\min} = O(n \log n) \Longrightarrow \text{FPRAS in } O((n/\epsilon)^2 \log n) \text{ time.}$

Bounding mixing time of Glauber dynamics.

Simple/classical technique:

Path coupling and Dobrushin uniqueness condition

How well do these approaches perform?

For now: Ferromagnetic Ising model.

For
$$G = (V, E)$$
, let $\Omega = \{-1, +1\}^V$.

From $X_t \in \Omega$:

- Choose $v \in V$ uniformly at random.
- For all $w \neq v$, set $X_{t+1}(w) = X_t(w)$.
- Choose $X_{t+1}(v)$ from marginal conditional on neighbors spin.

$$T_{\min} = \max_{X_0 \in \Omega} \min\{t : d_{\mathsf{TV}}(P^t(X_0, \cdot), \pi) \le 1/4\}.$$

COUPLING FOR BOUNDING T_{mix}

For all X_t, Y_t , define a coupling: $(X_t, Y_t) \rightarrow (X_{t+1}, Y_{t+1})$.

Look at Hamming distance: $H_t = |\{v \in V : X_t(v) \neq Y_t(v)\}|.$

If for all $X_t, Y_t \in \Omega$, $\mathbb{E}[H_{t+1}|X_t, Y_t] \le (1 - 1/n)H_t$, then $T_{mix} = O(n \log n)$.

 $d_{\mathsf{TV}}(X_{\mathsf{T}},Y_{\mathsf{T}}) \leq \Pr\left(X_{\mathsf{T}} \neq Y_{\mathsf{T}}\right) \leq \mathbb{E}\left[H_t\right] \leq H_0(1-1/n)^{\mathsf{T}} \leq n\exp(-\mathsf{T}/n) \leq 1/4.$

Path coupling [Bubley-Dyer '97]: Suffices to consider pairs where $H_t = 1$. Idea: Couplings compose and linearity of expectation.

PATH COUPLING ON \mathbb{Z}^2 :

Consider a pair (X_t, Y_t) that differ at exactly one vertex v^* :

Update v^* then $H(X_{t+1}, Y_{t+1}) = 0$. For $w \in N(v^*)$. Let d_w^+ (d_w^-) be number of + (and -) neighbors in Y_t . Update $w \in N(v^*)$ then $H(X_{t+1}, Y_{t+1}) = 2$ with probability:

$$\begin{aligned} \alpha(w) &:= \frac{\exp(\beta(d_w^+ + 1))}{\exp(\beta(d_w^+ + 1)) + \exp(\beta(d_w^- - 1))} - \frac{\exp(\beta d_w^+)}{\exp(\beta d_w^+) + \exp(\beta(d_w^-))} \\ & \mathbb{E}\left[H(X_{t+1}, Y_{t+1})\right] \le 1 - \frac{1}{n} + \frac{1}{n} \sum_{w \in N(v)} \alpha(w). \end{aligned}$$

Worst case $d^+ = d^-$. When d = 4 works for $\beta < .55$.

PATH COUPLING ON \mathbb{Z}^2 :

Consider a pair (X_t, Y_t) that differ at exactly one vertex v^* :

Update v^* then $H(X_{t+1}, Y_{t+1}) = 0$. For $w \in N(v^*)$. Let d_w^+ (d_w^-) be number of + (and -) neighbors in Y_t . Update $w \in N(v^*)$ then $H(X_{t+1}, Y_{t+1}) = 2$ with probability:

$$\begin{aligned} \alpha(w) &:= \frac{\exp(\beta(d_w^+ + 1))}{\exp(\beta(d_w^+ + 1)) + \exp(\beta(d_w^- - 1))} - \frac{\exp(\beta d_w^+)}{\exp(\beta d_w^+) + \exp(\beta(d_w^-))} \\ & \mathbb{E}\left[H(X_{t+1}, Y_{t+1})\right] \le 1 - \frac{1}{n} + \frac{1}{n} \sum_{w \in N(v)} \alpha(w). \end{aligned}$$

Worst case $d^+ = d^-$. When d = 4 works for $\beta < .55$. Goal: All $\beta < \beta_c := \ln(1 + \sqrt{2})$.

PATH COUPLING VS. DOBRUSHIN UNIQUENESS

For a configuration $\sigma \in \{+, -\}^V$ and $w \in V$, let

$$\sigma^{w}(z) = \begin{cases} \sigma(z) & \text{for } z \neq w \\ -\sigma(w) & \text{for } z = w. \end{cases}$$

What's the effect of disagreement at v on neighbors of v? Path coupling condition:

$$\max_{w} \max_{\sigma,\sigma^{w}} \sum_{z \in \mathcal{N}(w)} d_{\mathsf{TV}} \left[\mu \Big(\sigma(z) | \sigma(\mathcal{N}(z)) \Big), \mu \Big(\sigma(z) | \sigma^{w}(\mathcal{N}(z)) \Big) \right] < 1.$$

Dobrushin uniqueness:

$$\max_{w} \sum_{z \in \mathcal{N}(w)} \max_{\sigma, \sigma^{w}} d_{\mathsf{TV}} \left[\mu \Big(\sigma(z) | \sigma(\mathcal{N}(z)) \Big), \mu \Big(\sigma(z) | \sigma^{w}(\mathcal{N}(z)) \Big) \right] < 1.$$

Can we prove rapid mixing for all $\beta < \beta_c(\mathbb{Z}^2)$?

TALK OUTLINE

Setting

- Path Coupling and Dobrushin Uniqueness: Rapid Mixing for very high temperature.
- NOW \Rightarrow Strong Spatial Mixing (SSM): Ferro Ising: $O(n \log n)$ mixing on boxes of \mathbb{Z}^2
- Mossel-Sly for General Graphs:

Ferro Ising: $O(n \log n)$ mixing for general graphs

Orrelation Decay:

2-spin antiferro: FPTAS for general graphs

Spectral Independence:

2-spin antiferro: $O(n \log n)$ mixing for general graphs

UNIQUENESS PHASE TRANSITION?

Influence of boundary:

Let $p_L^+ = \Pr(\text{Origin has} + | \text{all} + \text{boundary for } L \times L \text{ box}).$ Let $p_L^- = \Pr(\text{Origin has} + | \text{all} - \text{boundary for } L \times L \text{ box}).$

UNIQUENESS PHASE TRANSITION?

Influence of boundary:

For ferromagnetic Ising model, critical point $\beta_c(\mathbb{Z}^2) = \ln(1 + \sqrt{2})$:

For all $\beta < \beta_c(\mathbb{Z}^2)$, $\lim_{L\to\infty} p_L^+ - p_L^- = 0$ uniqueness For all $\beta > \beta_c(\mathbb{Z}^2)$, $\lim_{L\to\infty} p_L^+ - p_L^- > 0$ non-uniqueness

Ferro Potts: $\beta_c(\mathbb{Z}^2) = \ln(1 + \sqrt{q})$ [Beffara,Duminil-Copin '12]

PHASE TRANSITION ON REGULAR TREE

For Δ -regular tree of height ℓ :

• Uniqueness ($\beta \leq \beta_c(\mathbb{T}_{\Delta})$): No boundary affects root.

Non-Uniqueness (β > β_c(T_Δ)): Exist boundaries affect root.

[Häggström '96]: $\beta_c(\mathbb{T}_{\Delta}) = \ln\left(\frac{\Delta}{\Delta-2}\right)$

Glauber dynamics on \mathbb{Z}^2

For $L \times L$ box of \mathbb{Z}^2 with volume n = |V|: high temp. $\beta < \beta_c$ β_c low temp. $\beta > \beta_c$ $O(n \log n)$ mixing of Glauber for all b.c. $exp(\Omega(\sqrt{n}))$ mixing of Glauber for periodic/free b.c.

Recall, $\beta_c(\mathbb{Z}^2) = \ln(1 + \sqrt{2}).$

Open: Mixing time for all + boundary for low-temperature region.

Note: FPRAS for Potts $q \ge q_0$ for all β (for periodic boundary) (Matthew's talk?) [BCHPT '20]

Spatial Mixing

For a box Λ_n and $v \in V$, let $\mathbf{p}(v) = \mathbf{Pr}(v = +)$.

Weak Spatial Mixing (WSM): $\exists C, \alpha > 0$, all Λ_n , all $v \in V$, all boundaries σ, η on $T \subset \partial \Lambda_n$: $|\mathbf{p}^{\sigma}(v) - \mathbf{p}^{\eta}(v)| \le C \exp(-\alpha \operatorname{dist}(v, T)))$

Strong Spatial Mixing (SSM):

 $\exists C, \alpha > 0$, all Λ_n , all $v \in V$, all boundaries σ, τ on $T \subset \partial \Lambda_n$:

$$|\mathbf{p}^{\sigma}(\mathbf{v}) - \mathbf{p}^{\tau}(\mathbf{v})| \leq C \exp(-lpha \operatorname{dist}(\mathbf{v}, \mathbf{S})),$$

where σ and τ differ on $S \subset T$.

In 2-dimensions, for all $\beta < \beta_c$: SSM holds.

Spatial Mixing

For a box Λ_n and $v \in V$, let $\mathbf{p}(v) = \mathbf{Pr}(v = +)$.

Weak Spatial Mixing (WSM): $\exists C, \alpha > 0$, all Λ_n , all $v \in V$, all boundaries σ, η on $T \subset \partial \Lambda_n$:

$$|\mathbf{p}^{\sigma}(\mathbf{v}) - \mathbf{p}^{\eta}(\mathbf{v})| \leq C \exp(-lpha \operatorname{dist}(\mathbf{v}, \mathbf{T})))$$

Strong Spatial Mixing (SSM): $\exists C, \alpha > 0$, all Λ_n , all $v \in V$, all boundaries σ, τ on $T \subset \partial \Lambda_n$:

$$|\mathbf{p}^{\sigma}(\mathbf{v}) - \mathbf{p}^{\tau}(\mathbf{v})| \leq C \exp(-lpha \operatorname{dist}(\mathbf{v}, \mathbf{S}))$$

where σ and τ differ on $S \subset T$.

Pointwise Strong Spatial Mixing: (equivalent to SSM on \mathbb{Z}^2) $\exists C, \alpha > 0$, all Λ_n , all $v \in V$, all $y \in \partial \Lambda_n$, boundaries σ, σ^y :

$$|\mathbf{p}^{\sigma}(\mathbf{v}) - \mathbf{p}^{\sigma^{\mathbf{y}}}(\mathbf{v})| \leq C \exp(-lpha \mathrm{dist}(\mathbf{v}, \mathbf{y}))$$

In 2-dimensions, for all $\beta < \beta_c$: SSM holds.

PROOF IDEA [MO '94, MOS '94, CESI '01, DSVW '04]

SSM $\implies O(n \log n)$ mixing on $L \times L$ box Λ with volume n = |V|:

Arbitrary X_0 , Y_0 . Goal: $\Pr(X_T \neq Y_T) \le 1/4$ for $T = O(n \log n)$. Suffices: for all $v \in V$, $\Pr(X_T(v) \neq Y_T(v)) \le 1/(4n)$.

Boosting argument: Suppose we know $T_{\min} = n^{100}$. For $\ell = \log n$, consider small $\ell \times \ell$ box B_v around v. After $n^{1.02}$ steps on big Λ , $n^{.01}$ updates on small B_v so locally mixed!

Monotonicity: couple so that if $X_t \leq Y_t$ then $X_{t+1} \leq Y_{t+1}$.

Suffices to couple $W_0 = \text{all } -1$ and $Z_0 = \text{all } +1$. Bounding chains: $W_0 = -1, Z_0 = +1$, frozen in \overline{B} : $W_t \le X_t \le Y_t \le Z_t$

 $\Pr\left(X_{\mathcal{T}}(v) \neq Y_{\mathcal{T}}(v)\right) \leq \Pr\left(W_{\mathcal{T}}(v) \neq Z_{\mathcal{T}}(v)\right)$

 $\leq |\mathbf{Pr}(W_{T}(v) = +) - \mu_{B}^{-}(v = +)| + |\mu_{B}^{-}(v = +) - \mu_{B}^{+}(v = +)| + |\mu_{B}^{+}(v = +) - \mathbf{Pr}(Z_{T}(v) = +)| \leq 1/4n,$ by induction (outer terms) + SSM (inner term).

$$T_{\min}^{new}(n) = O(n/\log n) \times T_{\min}^{old}(C\log^2 n):$$

$$2^n \to n^{O(\log n)} \to O(n^{1+\epsilon}) \to O(n\log^2 n).$$

FERRO ISING ON GENERAL GRAPHS

What about general graphs? (previous only works for amenable graphs)

For graphs of maximum degree Δ , computational phase transition at tree critical point.

high temp. $\beta < \beta_c \ \beta_c(\mathbb{T}_\Delta)$ low temp. $\beta > \beta_c$ $O(n \log n)$ mixing of Glauber
on all G of max degree Δ $exp(\Omega(n))$ mixing of Glauber
on random Δ -regular

Let $\beta_c(\mathbb{T}_d) = \ln\left(\frac{\Delta}{\Delta-2}\right)$ denote the critical point for infinite *d*-regular tree \mathbb{T}_d .

NOW: [Mossel-Sly '13]: All Δ , all $\delta > 0$, $\exists C = C(\Delta, \delta)$, all G max deg Δ , all $\beta < (1 - \delta)\beta_c(\mathbb{T}_{\Delta})$,

$T_{\min} \leq Cn \log n$.

[Jerrum-Sinclair '93]: $\forall G, \beta$, FPRAS (using high-temp. expansion) [Guo-Jerrum '17]: $\forall G, \beta$, Swendsen-Wang poly(*n*) mixing

Spatial Mixing

For $y \in \partial \Lambda_n$ and boundary σ , obtain σ^y by "flipping" spin at y. Pointwise Strong Spatial Mixing: (equivalent to SSM on \mathbb{Z}^2) Exists $C, \alpha > 0$, all Λ_n , all $v \in V$, all $y \in \partial \Lambda_n$, boundaries σ, σ^y :

$$|\mu_{\sigma}(\mathbf{v}=+) - \mu_{\sigma^{\mathbf{y}}}(\mathbf{v}=+)| \leq C \exp(-lpha \operatorname{dist}(\mathbf{v},\mathbf{y}))$$

For $v \in V$ and integer $R \ge 1$, let $B_R(v) = \{w : \operatorname{dist}(v, w) \le R\}$. Aggregate Strong Spatial Mixing (ASSM) for graph G = (V, E): Exists R, all $v \in V$, for $B = B_R(v)$,

$$\mathsf{ASSM} \text{ holds if } \sum_{\boldsymbol{y} \in \partial B} \max_{\sigma, \sigma^{\boldsymbol{y}}} |\mu_{\sigma}(\boldsymbol{v}=+) - \mu_{\sigma^{\boldsymbol{y}}}(\boldsymbol{v}=+)| \leq \frac{1}{4}.$$

For all G of max degree Δ , all $\beta < \beta_c(\mathbb{T}_{\Delta})$, ASSM holds on G.

[Mossel-Sly '09] Proof Approach:

• Previous approach for grid:

Box/ball *B* of radius $\Omega(\log n)$ around *v*. But for arbitrary *G*, |*B*| can be |*G*|. —Use constant *R* satisfies ASSM.

 Need to do multiple stages, can't couple in one round.
 ⇒ Induction on disagreement probability for a vertex Key Lemma: For all s ≥ 0,

$$\max_{v} \Pr\left(X_{s+T'}(v) \neq Y_{s+T'}(v)\right) \leq \frac{1}{2} \max_{v} \Pr\left(X_{s}(v) \neq Y_{s}(v)\right),$$

where $T' = C \frac{n}{|B|} T_{\min}(|B|) = O(n)$. \Longrightarrow Hence, $T_{\min} = O(n \log(n/\epsilon))$.

• Bounding chains: $W_0 = -1, Z_0 = +1$, but only frozen on \overline{B} for t > s. $W_s(\overline{B})$ and $Z_s(\overline{B})$ are arbitrary, so no monotonicity. [Peres-Winkler '13] Censoring: "Extra moves don't hurt": $d_{TV}(W_t, \mu) \ge d_{TV}(X_t, \mu)$ and $d_{TV}(Y_t, \mu) \le d_{TV}(Z_t, \mu)$. \implies suffices to bound $\Pr(W_{s+T'}(v) \ne Z_{s+T'}(v))$.

What about

Antiferrromagnetic Ising model on graphs of max degree Δ ?

- Computational phase transition at tree critical point?
- FPRAS/FPTAS for approximate counting?
- Rapid mixing of Glauber?

Focus on hard-core model

Any 2-spin antiferromagnetic model, e.g. antiferro Ising.

For G = (V, E), independent set is $\sigma \subset V$ where: for all $(y, z) \in E$, $y \notin \sigma$ or $z \notin \sigma$.

Graph G = (V, E), fugacity $\lambda > 0$, for each independent set σ we have

Gibbs distribution:
$$\mu(\sigma) = \frac{\lambda^{|\sigma|}}{7}$$

where

Partition function:
$$Z = \sum_{\sigma} \lambda^{|\sigma|}$$

 $\lambda = 1$, $Z = |\Omega| = \#$ of independent sets.

Inuition: Small λ easier: for $\lambda < 1$ prefer empty set/smaller sets. Large λ harder: for $\lambda > 1$ prefer max IS's/larger sets.

HARD-CORE PHASE TRANSITION

Influence of boundary:

Let $p_L^{\text{even}} = \Pr(\text{Origin occupied} \mid \text{even boundary for } L \times L \text{ box}).$ Let $p_L^{\text{odd}} = \Pr(\text{Origin occupied} \mid \text{odd boundary for } L \times L \text{ box}).$

HARD-CORE PHASE TRANSITION

Influence of boundary:

Conjecture: There exists critical point $\lambda_c(\mathbb{Z}^2)$ where:

For all $\lambda < \lambda_c(\mathbb{Z}^2)$, $\lim_{L\to\infty} p_L^{\text{even}} - p_L^{\text{odd}} = 0$ uniqueness For all $\lambda > \lambda_c(\mathbb{Z}^2)$, $\lim_{L\to\infty} p_L^{\text{even}} - p_L^{\text{odd}} > 0$ non-uniqueness

For 2-dimensional integer lattice \mathbb{Z}^2 :
Conjecture: $\lambda_c(\mathbb{Z}^2) \approx 3.79$
Best bounds: $2.53 < \lambda_c(\mathbb{Z}^2) < 5.36$ [SSSY '15, BGRT '13]

PHASE TRANSITION ON TREES

For Δ -regular tree of height ℓ :

Let $p_{\ell} := \mathbf{Pr}$ (root is occupied)

Extremal cases: even versus odd height. Does $\lim_{\ell \to \infty} p_{2\ell} = \lim_{\ell \to \infty} p_{2\ell+1}$?

$$\begin{split} \lambda_{c}(\mathbb{T}_{\Delta}) &= \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}. \end{split} \end{tabular} \label{eq:lambda} \begin{tabular}{ll} & & \lambda_{c}(\mathbb{T}_{\Delta}): \\ & & \lambda \leq \lambda_{c}(\mathbb{T}_{\Delta}): \end{tabular} \end{t$$

Tree/BP recursions: $p_{\ell+1} = \frac{\lambda(1-p_\ell)^{\Delta-1}}{1+\lambda(1-p_\ell)^{\Delta-1}}$

Key: Unique vs. Multiple fixed points of 2-level recursions.

ANTIFERROMAGNETIC ON GENERAL GRAPHS

high temp. $\lambda < \lambda_c - \lambda_c(\mathbb{T}_{\Delta})$

$$\lambda_{c}(\mathbb{T}_{\Delta}) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

low temp. $\lambda > \lambda_c$ No FPRAS $O(n \log n)$ mixing of Glauber on all G of max degree Δ

NOW: **1**. *Theorem [Weitz '06]:* For all Δ , all $\delta > 0$, exists $C = C(\Delta, \delta)$, for $\lambda < (1 - \delta)\lambda_{\epsilon}(\mathbb{T}_{\Delta})$ and G of max degree Δ , can approximate Z_{G} within $(1 \pm \epsilon)$ in time $(n/\epsilon^2)^C$.

[Barvinok '16, Patel-Regts '17, Peters-Regts '19]: Alternative FPTAS via Barvinok's polynomial interpolation method. (Next talk?)

2. Theorem [Chen-Liu-V '20]: For all Δ , all $\delta > 0$, exists $C = C(\Delta, \delta)$, for $\lambda < (1 - \delta)\lambda_c(\mathbb{T}_{\Delta})$ and G max degree Δ , Glauber mixes in time < Cnlogn. (Uses [Anari-Liu-Oveis Gharan '20] Spectral Independence approach.)

Theorem [Sly '09, Sly-Sun '14, Galanis-Stefankovic-V '14]: For all $\lambda > \lambda_c(\delta)$, unless NP = RP, no FPRAS for all graphs of maximum degree Δ . (Hard to approximate within C^n for $C = C(\Delta)$).

Idea for FPTAS for $Z_G(\lambda)$.

Input: G = (V, E) of max degree Δ and $\lambda < \lambda_c(\mathbb{T}_{\Delta})$.

Fix (arbitrarily) a vertex v, then:

- Compute marginal prob. v is unoccupied/occupied;

Idea for FPTAS for $Z_G(\lambda)$.

Input: G = (V, E) of max degree Δ and $\lambda < \lambda_c(\mathbb{T}_{\Delta})$.

Fix (arbitrarily) a vertex v, then:

- Compute marginal prob. v is unoccupied/occupied; HOW?

WEITZ'S SAW TREE

Fix G = (V, E) and $a \in V$.

Let $T = T_{saw}(G, a)$ be the *self-avoiding walks* in G starting at a, with a *particular fixed assignment to the leaves* of T.

Theorem [Weitz '06]: $\Pr_{\sigma \sim \mu_G} (a \notin \sigma) = \Pr_{\sigma \sim \mu_T} (a \notin \sigma)$

Boundary: for each vertex order neighbors. Root-leaf path ends with a cycle, e.g., b - c - f - e - b. Then fix the leaf to unoccupied if c > e and occupied if c < e. Let $T = T_{saw}(G, v)$ be the self-avoiding walks in G starting at v, with a particular fixed assignment to the leaves of T.

Theorem [Weitz '06]: $\Pr_{\sigma \sim \mu_G} (v \notin \sigma) = \Pr_{\sigma \sim \mu_T} (v \notin \sigma)$ (Only holds for 2-spin systems.)

In tree of size *N*, compute marginal of root (tree recursions) in poly(*N*) time but SAW tree $N = \Delta^{O(n)}$.

Second ingredient:

For every tree T of max deg Δ , SSM holds when $\lambda < \lambda_c(\mathbb{T}_\Delta)$.

 $\implies \text{truncate tree at depth } O(\log n)$

Running time: $\Delta^{O(\log n)} = n^{O(\log \Delta)}$.

How to prove SSM?

Show contraction of a potential function for the Jacobian of the log ratio of marginals (tree recursions).

[Li-Lu-Yin '13] 2-spin antiferro. spin system in tree uniqueness region.

ANTIFERROMAGNETIC ON GENERAL GRAPHS

$$\lambda_{c}(\mathbb{T}_{\Delta}) = \frac{(\Delta-1)^{\Delta-1}}{(\Delta-2)^{\Delta}} \approx \frac{e}{\Delta-2}.$$

high temp. $\lambda < \lambda_{c} \quad \lambda_{c}(\mathbb{T}_{\Delta})$ low temp. $\lambda > \lambda_{c}$
 $O(n \log n)$ mixing of Glauber No FPRAS
on all G of max degree Δ

1. Theorem [Weitz '06]: For all Δ , all $\delta > 0$, exists $C = C(\Delta, \delta)$, for $\lambda < (1 - \delta)\lambda_c(\mathbb{T}_{\Delta})$ and G of max degree Δ , can approximate Z_G within $(1 \pm \epsilon)$ in time $(n/\epsilon^2)^C$.

NOW: 2. Theorem [Chen-Liu-V '20]: For all Δ , all $\delta > 0$, exists $C = C(\Delta, \delta)$, for $\lambda < (1 - \delta)\lambda_c(\mathbb{T}_{\Delta})$ and G max degree Δ , Glauber mixes in time \leq Cnlogn. (Uses [Anari-Liu-Oveis Gharan '20] Spectral Independence approach.) (see Zongchen's talk for more details)

ALO'S SPECTRAL INDEPENDENCE

[Anari-Liu-Oveis Gharan '20] Spectral Independence approach:

For a pair of vertices $u, w \in V$, the influence of u on w:

$$\mathcal{I}_{\mu}(u \rightarrow w) = \mu(\sigma(w) = 1 | \sigma(u) = 1) - \mu(\sigma(w) = 1 | \sigma(u) = 0)$$

We need to consider the influence for any boundary or pining: For $\Lambda \subset V$ and $\tau \in \Omega_{\Lambda}$, let

$$\mathcal{I}^{\tau}_{\mu}(u \rightarrow w) = \mu(\sigma(w) = 1 | \sigma(u) = 1, \tau) - \mu(\sigma(w) = 1 | \sigma(u) = 0, \tau)$$

Let Ψ_{μ}^{τ} denote the $n \times n$ Influence matrix of pairwise influences.

Definition: η -spectrally independent if for all $\Lambda \subset V$, all $\tau \in \Omega_{\Lambda}$, $\lambda_1(\Psi_{\mu}^{\tau}) \leq \eta$. Definition: μ is *b*-marginally bounded if for all $\Lambda \subset V$, all $\tau \in \Omega_{\Lambda}$, all $u \in V \setminus \Lambda$, all $i \in \Omega_{u}^{\tau}$, $\mu(\sigma_u = i|\tau) \geq b$.

Theorem [Chen-Liu-V '20]: If *b*-marginally bounded and η -spectrally independent then $\exists C = C(\Delta, \eta, b)$, the mixing time of Glauber is $\leq Cn \log n$.

Note, $C = \left(\frac{\Delta}{b}\right)^{O(\eta/b^2)}$. For hard-core: show $\eta = O(1/\delta)$ and $b = \Omega(\lambda/(1+\lambda)^{\Delta}))$.

Pairwise influence:

$$\mathcal{I}_{\mu}(u
ightarrow w) = \mu(\sigma(w) = 1 | \sigma(u) = 1) - \mu(\sigma(w) = 1 | \sigma(u) = 0)$$

Let Ψ^{τ}_{μ} denote the $n \times n$ Influence matrix of pairwise influences.

How to bound $\lambda_1(\Psi) \leq \eta$?

Note: $\lambda_1(\Psi) \leq \max_{r \in V} \sum_{v \in V} |\mathcal{I}(v \to r)| \text{ and } \lambda_1(\Psi) \leq \max_{r \in V} \sum_{v} |\mathcal{I}(r \to v)|.$ Key Lemma: Fix $\Lambda \subset V, \tau \in \Omega_\Lambda$. Fix $r \in V$, let $T = T_{saw}(G, r, \tau)$.

$${\mathcal I}_G^ au(r o w) = \sum_{\widehat w\in S_w} {\mathcal I}_T^ au(r o \hat w),$$

where S_w is the set of all copies of w in T. Then, $\sum_{w \in V} |\mathcal{I}_G^r(r \to w)| = \sum_{\ell} \sum_{z \in L_\ell} |\mathcal{I}_T(r \to z)|$, where L_ℓ are the vertices at distance ℓ from the root r in T.

Finally, for ferro Ising can bound using ASSM (spatial mixing in [Mossel-Sly]), and for other 2-spin systems using potential functions as for proofs of SSM.

CONCLUSIONS

Open Problems:

- Mixing time is ≤ Cn log n where C = C(Δ, δ).
 For Ising obtain C = poly(Δ).
 Can we establish it for hard-core model?
- SSM \iff Spectral Independence
- Absence of complex zeros [?]→ Spectral Independence (Anari's talk?)
- Ferro Potts:

Open: FPRAS for $\beta < \beta_u(\mathbb{T}_{\Delta})$? *Known:* #BIS-hard for $\beta > \beta_c(\mathbb{T}_{\Delta})$ [GSVY '14]

• *k*-colorings:

Known: $O(n \log n)$ mixing when $k > 2\Delta$ [Jerrum '95] $O(n^2)$ mixing when $k > (11/6 - \epsilon)\Delta$ [CDMPP'19] $O(n \log n)$ for triangle-free graphs $k > 1.764\Delta$ [FGYZ'20,CGSV'20,CLY'20]

For even $k < \Delta$, no FPRAS (unless NP = RP) [GSV'14] Open: FPRAS for $k > \Delta + 1$?