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Ising Model

Consider graph G = (V ,E ) as L× L box of Z2, n = |V |:

Configurations: Ω = {−1,+1}V .

Inverse temperature β. For σ ∈ Ω:

Monochromatic edges: M(σ) = |{(v ,w) ∈ E : σ(v)=σ(w)}|

Sampling: Gibbs distribution: µ(σ) =
exp(βM(σ))

Z

Counting: Partition function: Z = ZG =
∑
σ∈Ω

exp(βM(σ)).

β > 0 is ferromagnetic and β < 0 is anti-ferromagnetic



Markov Chain for Ising Model

Glauber Dynamics: For G = (V ,E ), MC (Xt) on Ω = {−1,+1}V .

From Xt ∈ Ω:

Choose v ∈ V uniformly at random.

For all w 6= v , set Xt+1(w) = Xt(w).

Choose Xt+1(v) from marginal conditional on neighbors spin:

µ(σ(v)|σ(w) = Xt+1(w), w ∈ N(v)).

Stationary distribution π is Gibbs distribution µ.

Tmix(ε) = max
X0∈Ω

min{t : dTV(Pt(X0, ·), π) ≤ ε}.

For dist. µ, ν on Ω, dTV(µ, ν) =
1

2

∑
x∈Ω
|µ(x)−ν(x)| = max

S⊂Ω
µ(S)−ν(S).

Mixing time: Tmix := Tmix(1/4)
Sub-multiplicative: Tmix(ε) ≤ dlog2(1/ε)eTmix
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Counting ↔ Sampling

Let G∆ denote all graphs of maximum degree ∆.

Approx sampler µG , ∀G ∈ G∆ ↔ Approx counting ZG ∀G ∈ G∆.

Approximate sampler:
Given graph G = (V ,E ) ∈ G∆ and δ > 0, outputs X where

dTV(X , µG ) ≤ δ,
in time poly(|V |, log(1/δ)).

FPRAS for approximate counting:
Given graph G = (V ,E ) of maximum degree ∆ and δ, ε > 0,
outputs OUT where

Pr ((1− ε)OUT ≤ ZG ≤ (1 + ε)OUT ) ≥ 1− δ,
in time poly(|V |, 1/ε, log(1/δ)).

FPTAS = FPRAS with δ = 0.



Counting ↔ Sampling

Approx counting via Sampling

Simulated annealing: Let β0 = β > β1 > · · · > β`−1 > β` ≈ ∞.
Simple scheme: βi = βi−1(1 + 1/n).

ZG (β) =
ZG (β0)

ZG (β1)

ZG (β1)

ZG (β2)
. . .

ZG (β`−1)

ZG (β`)
2n.

Estimate ZG (βi )
ZG (βi−1)

by sampling µ(βi−1), outputting Xi =
wβi (σ)

wβi−1
(σ) .

If Var(Xi ) = O(1) for all i , then, O((`/ε)2) total samples suffices.

Better scheme: exists ` = O(
√
n × poly(log n)).

[Stefankovic-Vempala-V ’09], [Huber ’15],[Kolmogorov ’18]

Tmix = O(n log n) =⇒ FPRAS in O((n/ε)2 log n) time.



Path Coupling/Dobrushin Uniqueness

Bounding mixing time of Glauber dynamics.

Simple/classical technique:
Path coupling and Dobrushin uniqueness condition

How well do these approaches perform?

For now: Ferromagnetic Ising model.



Glauber dynamics for Ising Model

For G = (V ,E ), let Ω = {−1,+1}V .

From Xt ∈ Ω:

Choose v ∈ V uniformly at random.

For all w 6= v , set Xt+1(w) = Xt(w).

Choose Xt+1(v) from marginal conditional on neighbors spin.

Tmix = max
X0∈Ω

min{t : dTV(Pt(X0, ·), π) ≤ 1/4}.



Coupling for bounding Tmix

For all Xt ,Yt , define a coupling: (Xt ,Yt)→ (Xt+1,Yt+1).

Look at Hamming distance: Ht = |{v ∈ V : Xt(v) 6= Yt(v)}|.

If for all Xt ,Yt ∈ Ω, E [Ht+1|Xt ,Yt ] ≤ (1− 1/n)Ht ,

then Tmix = O(n log n).

dTV(XT ,YT ) ≤ Pr (XT 6= YT ) ≤ E [Ht ] ≤ H0(1− 1/n)T ≤ n exp(−T/n) ≤ 1/4.

Path coupling [Bubley-Dyer ’97]: Suffices to consider pairs where Ht = 1.
Idea: Couplings compose and linearity of expectation.



Path Coupling on Z2:

Consider a pair (Xt ,Yt) that differ at exactly one vertex v∗:

Update v∗ then H(Xt+1,Yt+1) = 0.
For w ∈ N(v∗). Let d+

w (d−w ) be number of + (and −) neighbors in Yt .

Update w ∈ N(v∗) then H(Xt+1,Yt+1) = 2 with probability:

α(w) :=
exp(β(d+

w + 1))

exp(β(d+
w + 1)) + exp(β(d−w − 1))

− exp(βd+
w )

exp(βd+
w ) + exp(β(d−w ))

E [H(Xt+1,Yt+1)] ≤ 1− 1

n
+

1

n

∑
w∈N(v)

α(w).

Worst case d+ = d−. When d = 4 works for β < .55.

Goal: All β < βc := ln(1 +
√

2).
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Path Coupling vs. Dobrushin Uniqueness

For a configuration σ ∈ {+,−}V and w ∈ V , let

σw (z) =

{
σ(z) for z 6= w

−σ(w) for z = w .

What’s the effect of disagreement at v on neighbors of v?

Path coupling condition:

max
w

max
σ,σw

∑
z∈N(w)

dTV
[
µ
(
σ(z)|σ(N(z))

)
, µ
(
σ(z)|σw (N(z))

)]
< 1.

Dobrushin uniqueness:

max
w

∑
z∈N(w)

max
σ,σw

dTV
[
µ
(
σ(z)|σ(N(z))

)
, µ
(
σ(z)|σw (N(z))

)]
< 1.

Can we prove rapid mixing for all β < βc(Z2)?
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Uniqueness Phase Transition?

Influence of boundary:

? ?

Let p+L = Pr (Origin has + | all + boundary for L× L box).

Let p−L = Pr (Origin has + | all - boundary for L× L box).



Uniqueness Phase Transition?

Influence of boundary:

? ?

For ferromagnetic Ising model, critical point βc(Z2) = ln(1 +
√

2):

For all β < βc(Z2), limL→∞ p+L − p−L = 0 uniqueness

For all β > βc(Z2), limL→∞ p+L − p−L> 0 non-uniqueness

Ferro Potts: βc(Z2) = ln(1 +
√
q) [Beffara,Duminil-Copin ’12]



Phase Transition on Regular Tree

For ∆-regular tree of height `:

p+` = Pr ( root has spin + | leaves have spin +)

p−` = Pr ( root has spin + | leaves have spin -)

Does lim
`→∞

p+` = lim
`→∞

p−` ?

+ ++ +++ + + ++ + + - -- --- - - -- - -

Uniqueness (β ≤ βc(T∆)): No boundary affects root.

Non-Uniqueness (β > βc(T∆)): Exist boundaries affect root.

[Häggström ’96]: βc(T∆) = ln
(

∆
∆−2

)



Glauber dynamics on Z2

For L× L box of Z2 with volume n = |V |:

high temp. β < βc

O(n log n) mixing of Glauber
for all b.c.

low temp. β > βc

exp(Ω(
√
n)) mixing of Glauber

for periodic/free b.c.

βc

Recall, βc(Z2) = ln(1 +
√

2).

Open: Mixing time for all + boundary for low-temperature region.

Note: FPRAS for Potts q ≥ q0 for all β (for periodic boundary)
(Matthew’s talk?) [BCHPT ’20]



Spatial Mixing

For a box Λn and v ∈ V , let p(v) = Pr (v = +).

Weak Spatial Mixing (WSM):
∃C , α > 0, all Λn, all v ∈ V , all boundaries σ, η on T ⊂ ∂Λn:

|pσ(v)− pη(v)| ≤ C exp(−αdist(v ,T )))

Strong Spatial Mixing (SSM):
∃C , α > 0, all Λn, all v ∈ V , all boundaries σ, τ on T ⊂ ∂Λn:

|pσ(v)− pτ (v)| ≤ C exp(−αdist(v ,S)),

where σ and τ differ on S ⊂ T .

In 2-dimensions, for all β < βc : SSM holds.
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Proof idea [MO ’94, MOS ’94, Cesi ’01, DSVW ’04]

SSM =⇒ O(n log n) mixing on L× L box Λ with volume n = |V |:
Arbitrary X0,Y0. Goal: Pr (XT 6= YT ) ≤ 1/4 for T = O(n log n).

Suffices: for all v ∈ V , Pr (XT (v) 6= YT (v)) ≤ 1/(4n).

Boosting argument: Suppose we know Tmix = n100.
For ` = log n, consider small `× ` box Bv around v .
After n1.02 steps on big Λ, n.01 updates on small Bv so locally mixed!

Monotonicity: couple so that if Xt ≤ Yt then Xt+1 ≤ Yt+1.

Suffices to couple W0 = all −1 and Z0 = all +1.
Bounding chains: W0 = −1,Z0 = +1, frozen in B: Wt ≤ Xt ≤ Yt ≤ Zt

Pr (XT (v) 6= YT (v)) ≤ Pr (WT (v) 6= ZT (v))

≤ |Pr (WT (v) = +)−µ−B (v = +)|+|µ−B (v = +)−µ+
B (v = +)|+|µ+

B (v = +)−Pr (ZT (v) = +)| ≤ 1/4n,

by induction (outer terms) + SSM (inner term).

Tnew
mix (n) = O(n/ log n)× T old

mix(C log2 n):

2n → nO(log n) → O(n1+ε)→ O(n log2 n).



Ferro Ising on general graphs

What about general graphs? (previous only works for amenable
graphs)

For graphs of maximum degree ∆,
computational phase transition at tree critical point.

high temp. β < βc

O(n log n) mixing of Glauber
on all G of max degree ∆

low temp. β > βc

exp(Ω(n)) mixing of Glauber
on random ∆-regular

βc(T∆)

Let βc(Td) = ln
(

∆
∆−2

)
denote the critical point for infinite d-regular tree Td .

NOW: [Mossel-Sly ’13]: All ∆, all δ > 0, ∃C = C(∆, δ), all G max deg ∆,
all β < (1− δ)βc(T∆),

Tmix ≤ Cn log n.

[Jerrum-Sinclair ’93]: ∀G , β, FPRAS (using high-temp. expansion)
[Guo-Jerrum ’17]: ∀G , β, Swendsen-Wang poly(n) mixing



Spatial Mixing

For y ∈ ∂Λn and boundary σ, obtain σy by “flipping” spin at y .

Pointwise Strong Spatial Mixing: (equivalent to SSM on Z2)
Exists C , α > 0, all Λn, all v ∈ V , all y ∈ ∂Λn, boundaries σ, σy :

|µσ(v = +)− µσy (v = +)| ≤ C exp(−αdist(v , y))

For v ∈ V and integer R ≥ 1, let BR(v) = {w : dist(v ,w) ≤ R}.

Aggregate Strong Spatial Mixing (ASSM) for graph G = (V ,E ):
Exists R, all v ∈ V , for B = BR(v),

ASSM holds if
∑
y∈∂B

max
σ,σy
|µσ(v = +)− µσy (v = +)| ≤ 1

4
.

For all G of max degree ∆, all β < βc(T∆), ASSM holds on G .



General graphs

[Mossel-Sly ’09] Proof Approach:

• Previous approach for grid:
Box/ball B of radius Ω(log n) around v .
But for arbitrary G , |B| can be |G |.
—Use constant R satisfies ASSM.

• Need to do multiple stages, can’t couple in one round.
=⇒ Induction on disagreement probability for a vertex
Key Lemma: For all s ≥ 0,

max
v

Pr (Xs+T ′(v) 6= Ys+T ′(v)) ≤ 1

2
max

v
Pr (Xs(v) 6= Ys(v)),

where T ′ = C n
|B|Tmix(|B|) = O(n). =⇒ Hence, Tmix = O(n log(n/ε)).

• Bounding chains: W0 = −1,Z0 = +1, but only frozen on B for t > s.
Ws(B) and Zs(B) are arbitrary, so no monotonicity.
[Peres-Winkler ’13] Censoring: “Extra moves don’t hurt”:

dTV(Wt , µ) ≥ dTV(Xt , µ) and dTV(Yt , µ) ≤ dTV(Zt , µ).
=⇒ suffices to bound Pr (Ws+T ′(v) 6= Zs+T ′(v)).



Antiferro Models on General Graphs

What about
Antiferrromagnetic Ising model on graphs of max degree ∆?

• Computational phase transition at tree critical point?
• FPRAS/FPTAS for approximate counting?
• Rapid mixing of Glauber?

Focus on hard-core model
Any 2-spin antiferromagnetic model, e.g. antiferro Ising.



Hard-Core (Gas) Model

For G = (V ,E ), independent set is σ ⊂ V where:
for all (y , z) ∈ E , y 6∈ σ or z 6∈ σ.

Graph G = (V ,E ), fugacity λ > 0, for each independent set σ we
have

Gibbs distribution: µ(σ) =
λ|σ|

Z

where
Partition function: Z =

∑
σ

λ|σ|

λ = 1, Z = |Ω| = # of independent sets.

Inuition: Small λ easier: for λ < 1 prefer empty set/smaller sets.
Large λ harder: for λ > 1 prefer max IS’s/larger sets.



Hard-core Phase Transition

Influence of boundary:

? ?

Let pevenL = Pr (Origin occupied | even boundary for L× L box).

Let poddL = Pr ( Origin occupied | odd boundary for L× L box).



Hard-core Phase Transition

Influence of boundary:

? ?

Conjecture: There exists critical point λc(Z2) where:

For all λ < λc(Z2), limL→∞ pevenL − poddL = 0 uniqueness

For all λ > λc(Z2), limL→∞ pevenL − poddL > 0 non-uniqueness

For 2-dimensional integer lattice Z2:
Conjecture: λc(Z2) ≈ 3.79
Best bounds: 2.53 < λc(Z2) < 5.36 [SSSY ’15, BGRT ’13]



Phase Transition on Trees

For ∆-regular tree of height `:

Let p` := Pr (root is occupied)

Extremal cases: even versus odd height.
Does lim

`→∞
p2` = lim

`→∞
p2`+1 ?

λc(T∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 . [Kelly ’86]

λ ≤ λc(T∆): No boundary effects root. uniqueness
λ > λc(T∆): Exist boundaries effect root. non-uniqueness

Tree/BP recursions: p`+1 = λ(1−p`)∆−1

1+λ(1−p`)∆−1

Key: Unique vs. Multiple fixed points of 2-level recursions.



Antiferromagnetic on general graphs

λc(T∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

high temp. λ < λc

O(n log n) mixing of Glauber
on all G of max degree ∆

low temp. λ > λc

No FPRAS

λc(T∆)

NOW : 1. Theorem [Weitz ’06]: For all ∆, all δ > 0, exists C = C(∆, δ), for
λ < (1− δ)λc(T∆) and G of max degree ∆, can approximate ZG within (1± ε)
in time (n/ε2)C .

[Barvinok ’16,Patel-Regts ’17,Peters-Regts ’19]: Alternative FPTAS via
Barvinok’s polynomial interpolation method. (Next talk?)

2. Theorem [Chen-Liu-V ’20]: For all ∆, all δ > 0, exists C = C(∆, δ), for
λ < (1− δ)λc(T∆) and G max degree ∆, Glauber mixes in time ≤ Cnlogn.
(Uses [Anari-Liu-Oveis Gharan ’20] Spectral Independence approach.)

Theorem [Sly ’09, Sly-Sun ’14, Galanis-Stefankovic-V ’14]: For all λ > λc(δ),
unless NP = RP, no FPRAS for all graphs of maximum degree ∆.
(Hard to approximate within C n for C = C(∆)).



[Weitz ’06]’s algorithmic approach

Idea for FPTAS for ZG (λ).

Input: G = (V ,E ) of max degree ∆ and λ < λc(T∆).

Fix (arbitrarily) a vertex v , then:

1 Compute marginal prob. v is unoccupied/occupied;

HOW?

2 Recurse on G \ v or G \ (v ∪ N(v)) with probabilities from
step 1.
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Weitz’s SAW Tree

Fix G = (V ,E) and a ∈ V .
Let T = Tsaw(G , a) be the self-avoiding walks in G starting at a,
with a particular fixed assignment to the leaves of T .

Theorem [Weitz ’06]: Prσ∼µG (a /∈ σ) = Prσ∼µT (a /∈ σ)

a

d b

e ce

b f

c

a b c

d e f
f

c

b

d f

c
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e

d

g

i g

j

i
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e c
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c
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d

j i j

j

i

i

j

Boundary: for each vertex order neighbors.
Root-leaf path ends with a cycle, e.g., b − c − f − e − b.
Then fix the leaf to unoccupied if c > e and occupied if c < e.



High-level idea of [Weitz ’06]’s approach

Let T = Tsaw(G , v) be the self-avoiding walks in G starting at v ,
with a particular fixed assignment to the leaves of T .

Theorem [Weitz ’06]: Prσ∼µG (v /∈ σ) = Prσ∼µT (v /∈ σ)
(Only holds for 2-spin systems.)

In tree of size N, compute marginal of root (tree recursions) in poly(N) time
but SAW tree N = ∆O(n).

Second ingredient:
For every tree T of max deg ∆, SSM holds when λ < λc(T∆).

=⇒ truncate tree at depth O(log n)
Running time: ∆O(log n) = nO(log∆).

How to prove SSM?
Show contraction of a potential function for the Jacobian of the log ratio of
marginals (tree recursions).

[Li-Lu-Yin ’13] 2-spin antiferro. spin system in tree uniqueness region.



Antiferromagnetic on general graphs

λc(T∆) = (∆−1)∆−1

(∆−2)∆ ≈ e
∆−2 .

high temp. λ < λc

O(n log n) mixing of Glauber
on all G of max degree ∆

low temp. λ > λc

No FPRAS

λc(T∆)

1. Theorem [Weitz ’06]: For all ∆, all δ > 0, exists C = C(∆, δ), for
λ < (1− δ)λc(T∆) and G of max degree ∆, can approximate ZG within (1± ε)
in time (n/ε2)C .

NOW : 2. Theorem [Chen-Liu-V ’20]: For all ∆, all δ > 0, exists C = C(∆, δ),
for λ < (1− δ)λc(T∆) and G max degree ∆, Glauber mixes in time ≤ Cnlogn.
(Uses [Anari-Liu-Oveis Gharan ’20] Spectral Independence approach.)

(see Zongchen’s talk for more details)



ALO’s Spectral Independence

[Anari-Liu-Oveis Gharan ’20] Spectral Independence approach:

For a pair of vertices u,w ∈ V , the influence of u on w :

Iµ(u → w) = µ(σ(w) = 1|σ(u) = 1)− µ(σ(w) = 1|σ(u) = 0)

We need to consider the influence for any boundary or pining:
For Λ ⊂ V and τ ∈ ΩΛ, let

Iτµ(u → w) = µ(σ(w) = 1|σ(u) = 1, τ)− µ(σ(w) = 1|σ(u) = 0, τ)

Let Ψτµ denote the n × n Influence matrix of pairwise influences.

Definition: η-spectrally independent if for all Λ ⊂ V , all τ ∈ ΩΛ, λ1(Ψτµ ) ≤ η.
Definition: µ is b-marginally bounded if for all Λ ⊂ V , all τ ∈ ΩΛ, all
u ∈ V \ Λ, all i ∈ Ωτu , µ(σu = i |τ) ≥ b.

Theorem [Chen-Liu-V ’20]: If b-marginally bounded and η-spectrally
independent then ∃C = C(∆, η, b), the mixing time of Glauber is ≤ Cn log n.

Note, C =
(
∆
b

)O(η/b2)
.

For hard-core: show η = O(1/δ) and b = Ω(λ/(1 + λ)∆)).



Bounding Influence Matrix

Pairwise influence:
Iµ(u → w) = µ(σ(w) = 1|σ(u) = 1)− µ(σ(w) = 1|σ(u) = 0)

Let Ψτµ denote the n × n Influence matrix of pairwise influences.

How to bound λ1(Ψ) ≤ η?

Note: λ1(Ψ) ≤ maxr∈V
∑

v∈V |I(v → r)| and λ1(Ψ) ≤ maxr∈V
∑

v |I(r → v)|.

Key Lemma: Fix Λ ⊂ V , τ ∈ ΩΛ. Fix r ∈ V , let T = Tsaw(G , r , τ).

IτG (r → w) =
∑
ŵ∈Sw

IτT (r → ŵ),

where Sw is the set of all copies of w in T .
Then,

∑
w∈V |I

τ
G (r → w)| =

∑
`

∑
z∈L`
|IT (r → z)|,

where L` are the vertices at distance ` from the root r in T .

Finally, for ferro Ising can bound using ASSM (spatial mixing in [Mossel-Sly]),
and for other 2-spin systems using potential functions as for proofs of SSM.



Conclusions

Open Problems:

Mixing time is ≤ Cn log n where C = C (∆, δ).
For Ising obtain C = poly(∆).
Can we establish it for hard-core model?

SSM
?⇐⇒ Spectral Independence

Absence of complex zeros
?⇐⇒ Spectral Independence

(Anari’s talk?)

Ferro Potts:
Open: FPRAS for β < βu(T∆)?
Known: #BIS-hard for β > βc(T∆) [GSVY ’14]

k-colorings:
Known: O(n log n) mixing when k > 2∆ [Jerrum ’95]

O(n2) mixing when k > (11/6− ε)∆ [CDMPP’19]

O(n log n) for triangle-free graphs k > 1.764∆
[FGYZ’20,CGSV’20,CLY’20]

For even k < ∆, no FPRAS (unless NP = RP) [GSV’14]

Open: FPRAS for k > ∆+ 1?


