CS 8803: Statistical Physics in Algorithms and Combinatorics: Assignment 2 Due Wednesday, February 5. Type solutions and send by email to wperkins3@gatech.edu

- (1) Fix $d > 0, q \ge 3$. Let p = d/n. Let $G \sim G(n, p)$ and let $Z_q(G)$ denote the number of proper q-colorings of G.
 - (a) Compute $\mathbb{E}Z_q(G)$.
 - (b) Using the first-moment method (and the calculation above), find $d_1 > 0$ so that if $d > d_1$, then whp G is not q-colorable.
 - (c) Improve this bound by conditioning on a high probability event (based on the number of edges of G). Write the new threshold $d_2 < d_1$ explicitly.
 - (d) Prove that for d < 1, the following holds:

$$\frac{1}{n}\log Z_q(G) \to \log q + \frac{d}{2}\log\left(1 - \frac{1}{q}\right)$$

in probability as $n \to \infty$. (Hint: use a fact about the random graph G(n, p)).

- (e) Assume for simplicity that q divides n. A proper q-coloring is balanced if the color classes are all the same size. Let $Z_{q,\text{bal}}(G)$ denote the number of balanced proper q-colorings of G. For the following questions, work with the G(n,m) model with m = dn/2.

 - (i) Show that $\lim_{n\to\infty} \frac{1}{n} \log \mathbb{E}Z_{q,\text{bal}}(G) = \lim_{n\to\infty} \frac{1}{n} \log \mathbb{E}Z_q(G)$ (ii) Let $f_2(q,d) = \lim_{n\to\infty} \frac{1}{n} \mathbb{E}[Z^2_{q,\text{bal}}(G)]$. Express f(q,d) as an optimization problem over doubly stochastic $q \times q$ matrices.
 - (iii) State the Paley–Zygmund inequality.
 - (iv) Assume that for some d, q the unique optimizer of this optimization problem above is the constant $1/q^2$ matrix. What can you conclude about the probability that G has a proper q-coloring?
- (2) Consider the ferromagnetic Ising model (i.e. $Z = \sum_{\sigma} \lambda^{\#+1 \text{ spins}} e^{\beta \cdot \# \text{ monochromatic edges}}$) with inverse temperature β and external field λ on the tree T shown below. Take $\lambda = 2$ and $e^{\beta} = 3$.

FIGURE 1. The tree T

- (a) Compute all of the BP messages sent from each vertex to each of its neighbors.
- (b) Using these messages, compute the marginals of the Ising model for each vertex.
- (c) Using the messages, write down the Bethe free energy for $\log Z_T$.
- (3) Define the function $g_c(x) = c \exp(-x)$.
 - (a) Show that for c > 0 fixed, g_c has a unique fixed point on the interval [0, c], call this x_c . Give a formula for x_c .

- (b) Show that there is some $c^* > 0$ so that if $c < c^*$, then starting from any $x_0 \in [0, c]$, the iteration $x_{j+1} = g_c(x_j)$ converges to x_c . Give a formula for the best possible such c^* .
- (c) Show that for $c > c^*$, the iteration may not converge.
- (d) Use the above to prove the following facts about phase transitions in the hard core model on the infinite Δ -regular tree \mathbf{T}_{Δ} .
 - (i) If $c < c^*$, then for sufficiently large Δ , and $\lambda = c/\Delta$, there is a unique λ -hard-core measure on \mathbf{T}_{Δ} .
 - (ii) If $c > c^*$, then for sufficiently large Δ , and $\lambda = c/\Delta$, there are multiple distinct λ -hard-core measures on \mathbf{T}_{Δ} .
- (e) (Bonus question) Can you carry out the same kind of analysis for $\mathbf{T}_{\Delta}^{(3)}$, the infinite Δ -regular, 3-uniform, linear hypergraph? (A hypergraph independent set is a set of vertices that induce no hyperedges. A linear hypergraph is one in which two edges overlap in at most one vertex.)