Will Perkins

  • email: math@willperkins.org
  • CV
Upcoming visits, conferences, and talks:


I'm currently a Birmingham Fellow in the School of Mathematics at the University of Birmingham in the UK. My research is a mix of probability, statistics, computer science, and combinatorics.

    On the average size of independent sets in triangle-free graphs, preprint, 2016, (with Ewan Davies, Matthew Jenssen, and Barnaby Roberts).
    We prove that the average size of an independent set in any triangle-free graph of maximum degree d is at least (1+o_d(1)) log d/d·n, giving an alternative proof of Shearer's upper bound on the Ramsey number R(3,k). We then prove new lower bounds on the total number of independent sets in triangle-free graphs, including a result for triangle-free graphs of maximum degree d that is asymptotically tight in the exponent.
    We conjecture that in any triangle-free graph there is at least a factor 4/3 gap between the maximum and average independent set size. Combined with the above theorem, a proof of this conjecture would lead to an improvement on the current upper bound on R(3,k).
    The Widom-Rowlinson model, the hard-core model and the extremality of the complete graph, to appear, European Journal of Combinatorics, (with Emma Cohen, Péter Csikvári, and Prasad Tetali).
    We give a short alternative proof of the result that the Widom-Rowlinson free energy is maximized over d-regular graphs by the complete graph on d+1 vertices. We also resolve one of the conjectures from the previous paper. The main tool is a bijection between the Widom-Rowlinson model and the hard-core model on a modified graph that appears in a paper of Brightwell, Haggstrom, and Winkler.
    Belief propagation on replica symmetric random factor graph models, (extended abstract at RANDOM 2016), (with Amin Coja-Oghlan).
    Physicists predict that the free energy of random factor graph models satisfying a certain "static replica symmetry" condition can be calculated via the Belief Propagation message passing scheme Krzakala, Montanari, Ricci-Tersenghi, Semerjian, Zdeborova PNAS 2007. We prove this conjecture for two general classes of random factor graph models: Poisson and regular random factor graphs. We show that the messages constructed as in the case of acyclic factor graphs asymptotically satisfy the Belief Propagation equations, and that the free energy density is given by the Bethe free energy formula.
    Limits of discrete distributions and Gibbs measures on random graphs, preprint, 2015, (with Amin Coja-Oghlan and Kathrin Skubch).
    Inspired by the theory of graph limits and the work of Panchenko we develop a notion of convergence for sequences of discrete probability measures and prove a Regularity Lemma (in the sense of Szemeredi) in this setting. We then apply this to Gibbs measures on sparse random graphs and verify the physicists' replica symmetric solution under the hypothesis of non-reconstruction and convergence in probability of the sequence of Gibbs measures on the random graphs, in the topology defined above.
    On the Widom-Rowlinson Occupancy Fraction in Regular Graphs, to appear, Combinatorics, Probability and Computing, (with Emma Cohen and Prasad Tetali).
    The Widom-Rowlinson model on a graph is a random configuration of two types of particles with a hard-core interaction between particles of different types. The occupancy fraction of the model is the fraction of vertices occupied by a particle of either type. We show that over all d-regular graphs, the occupancy fraction is maximized by K_(d+1), the complete graph on d+1 vertices. Via integration, this shows that the normalized partition function of the model is maximized by K_(d+1), and this in turn shows that K_(d+1) maximizes the normalized number of homomorphisms from a d-regular graph to the path on 3 vertices with a self-loop on each vertex, proving a conjecture of David Galvin.
    Independent Sets, Matchings, and Occupancy Fractions, preprint, 2015, (with Ewan Davies, Matthew Jenssen, and Barnaby Roberts).
    We give tight upper bounds on the logarithmic derivative of the independence and matching polynomials of any d-regular graph.
    For independent sets, this is a strengthening of a sequence of results of Kahn, Galvin and Tetali, and Zhao that a disjoint union of K_dd's maximizes the independence polynomial and total number of independent sets among all d-regular graphs.
    For matchings, the result implies that disjoint unions of K_dd's maximize the matching polynomial and total number of matchings, as well as proving the asymptotic upper matching conjecture of Friedland, Krop, Lundow, and Markstrom.
    The proof uses an occupancy method: we show that the occupancy fraction in the hard-core model and the edge occupancy fraction in the monomer-dimer model are maximized over all d-regular graphs by K_dd.
    Birthday Inequalities, Repulsion, and Hard Spheres, Proceedings of the AMS, 2016.
    I study a "Birthday Inequality" and a "Repulsion Inequality" for random geometric graphs. This gives a new method for bounding the partition function in two models from statistical physics: the hard sphere model and the hard-core lattice gas model. Two applications in combinatorics are new upper bounds on the number of independent sets and matchings of a given size in d-regular graphs. Another application is a surprising fact about spheres in dimension 24: at certain densities, if we condition that a set of n randomly placed centers of spheres of radius r are at pairwise distance greater than r, then the expectation of the volume of their union decreases!
    Spectral Thresholds in the Bipartite Stochastic Block Model, (extended abstract at COLT 2016), (with Laura Florescu).
    We study a stochastic block model on a bipartite graph with unequal sizes and a planted partition on each side. The model arose in previous work on planted random k-SAT. We show that the usual spectral algorithm based on the SVD has a edge-density threshold for recovery much higher than the algorithm based on subsampling (below) and a new algorithm we propose, Diagonal Deletion SVD. We show the failure of the usual SVD is due to a localization phenomenon of the singular vectors. We also show that the bipartite block model exhibits a sharp threshold for detection of the planted partition, as in the results for the SBM of Mossel, Neeman, Sly and Massoulie.
    Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's, NIPS 2015, (with Vitaly Feldman and Santosh Vempala)
    We present a new algorithm for recovering planted solutions in two models, the stochastic block model and planted constraint satisfaction problems, via a common generalization in terms of random bipartite graphs. The idea of the algorithm is to perform power iteration with a sequence of adjacency matrices from disjoint graphs subsampled from the original random graph. The algorithm is simple, easy to implement, and its running time is linear in the number of edges/constraints used.
    On the Complexity of Random Satisfiability Problems with Planted Solutions, STOC 2015, (with Vitaly Feldman and Santosh Vempala)
    We consider the problem of finding a planted assignment to a random k-SAT formula (or a planted partition in a random hypergraph). This problem exhibits an algorithmic gap: while the planted solution is essentially unique with a large linear number of clauses, there are distributions for which efficient algorithms are only known for n^{k/2} clauses. We give a rigorous explanation of this gap by showing that any efficient statistical algorithm requires n^{r/2} clauses, where r is a parameter that depends on the distribution and can be as high as k. We also describe a statistical algorithm that matches the sample complexity up to log factors. This gives concrete evidence for the security of Goldreich's proposed one-way function, and proves Feige's 3-SAT hypothesis for statistical algorithms.
    Large Deviations for the Empirical Distribution in the Branching Random Walk, Electronic Journal of Probability, 2015, (with Oren Louidor)
    We consider large deviations in the empirical distribution of a super-critical branching random walk. In particular we answer questions such as: What is the asymptotic probability that at least 70% of particles are between -Sqrt(n) and Sqrt(n) after n steps, instead of the expected 68%? We find there are two distinct regimes if the set considered is a finite union of intervals, with rates interpolating between the two for sets that are countable unions of intervals.
    On Sharp Thresholds in Random Geometric Graphs, RANDOM 2014, (with Milan Bradonjic)
    We give a characterization of vertex-monotone properties with sharp thresholds in a Poisson random geometric graph or hypergraph. As an application we show that a geometric model of random k-SAT exhibits a sharp threshold for satisfiability.
    Computer-enabled Metrics of Statistical Significance for Discrete Data, (with Mark Tygert and Rachel Ward)
    This monograph addresses basic problems in statistical significance from an algorithmic perspective. We show that a simple root-mean-square test and the discrete Kolmogorov-Smirnov test are often superior to classical chi-square statistics, and give the relevant theory along with numerous examples.
    Random k-SAT and the Power of Two Choices, Random Structures and Algorithms, 2014.
    I give an Achlioptas rule to shift the satisfiability threshold for random k-SAT. Previously this was known for k=2 (Sinclair/Vilenchik), and the parameters have since been improved (Dani et al). I also propose a semi-random decision problem for random k-SAT.
    Some deficiencies of χ2 and classical exact tests of significance, Applied and Computational Harmonic Analysis, 2014. (with Mark Tygert and Rachel Ward)
    We indicate the serious problems faced by the chi-square test in dealing with sparse data and propose a remedy. See Andrew Gellman's blog post for a discussion.
    The Bohman-Frieze Process Near Criticality, Random Structures and Algorithms, 2013 (with Mihyun Kang and Joel Spencer).
    We study the fine behavior of the phase transition of the Bohman-Frieze random graph process, and show that it shares several critical exponents with the Erdos-Renyi random graph. Our technique involves deriving a PDE associated to the process and using singularity analysis to extra information about small components from a multivariate generating function.
    Hardness of Finding Independent Sets In Almost 3-Colorable Graphs, FOCS 2010 (with Irit Dinur, Subhash Khot, and Muli Safra)
    With techniques adapted from (Dinur/Safra) and Fourier analysis on the discrete q-ary hypercube, we prove hardness of approximation for graph coloring. In particular, we show that it is NP-hard to distinguish a graph that is almost k-colorable from one whose largest independent set is a 1/k^2 fraction of the graph.
    The Forgetfulness of Balls and Bins, Random Structures and Algorithms, 2012.
    I answer the question 'How many additional random balls are necessary to disguise an arbitrary initial placement of m balls in n bins?' with a precise answer that depends on the empirical variance of the initial placement.
    Computing the confidence levels for a root-mean-square test of goodness-of-fit, Applied Mathematics and Computation, 2011 (with Mark Tygert and Rachel Ward)
    We give an efficient numerical algorithm for computing the asymptotic distribution of a root-mean-square goodness of fit test. The algorithm is a numerical evaluation of a contour integral.
Georgia Tech's robot